紐約市政府於2018年8月通過「短期租賃規則」(Regulation of Short-term Residential Rentals)。該規則將於通過後180天生效適用,強制要求平台業者必須定期提供下列數據報告給紐約市政府:
若相關平台業者未提交報告,則須面臨1,500美元以下之罰鍰。目前紐約市是Airbnb在美國最大的市場,該項規則的通過及生效勢必會對Airbnb造成相當大的影響及成本負擔。因此Airbnb在該規則通過後不久,旋即向法院提起訴訟,聲稱該規範違反了平台用戶之隱私權及美國憲法第一及第四修正案所保障之權利。
紐約市政府方面則作出回應,這項規則可協助政府取得保護住房安全所需的關鍵資訊,並保證遊客及租賃者之安全,同時並打擊非法的短期出租。而該規則也顯示紐約政府對於短期日租套房之服務將趨向保守的態度。
中國大陸國家發展改革委員會及財政部重新核定農業轉殖基因安全評估試驗收費標準,擴大相關試驗範圍,並於去(2005)年12月29日公告實施,有效期2年,而農業部2003年的第303號公告同時廢止。2003年的公告僅針對「環境安全檢測」與「食用安全檢測」訂定收費標準,但是隨著基改作物種植面積與種類逐年增加,因此增列了中間試驗、環境釋放、生產性試驗在進行安全評價時,也需要收取相關費用。
美國衛生暨福利部於09年8月公布關於醫療資訊外洩通知義務之暫行最終規則於2000年基因圖譜解碼後,「基因歧視」議題成為各界關注焦點,而在電子通訊技術之配合下,更加速了包括基因資訊之個人醫療資訊的流通。在此時空背景下,如何能在善用相關技術所帶來的便捷同時,也對於相關資訊不甚外流時,得以有適切的因應措施以保障患者之隱私,成為了必須處理的問題。 美國國會甫於今年(2009年)2月所通過的「經濟與臨床健康資訊科技法」 (The Health Information Technology for Economic and Clinical Health Act, HITECH) 之相關修正中,強化了對醫療資訊之保護,其中要求美國衛生暨福利部(the Department of Health and Human Service, HHS ),針對受保護之醫療資訊未經授權而取得、侵入、使用或公開外洩之情形擬定「暫行最終規則」(interim final rule)進行管理,該項規則亦於今年(2009年)8月24日公布。值得注意的是,HITECH之規範主體(適用主體、商業夥伴)與保護客體(未依法定方式做成保護措施之健康資訊)皆沿用「1996醫療保險可攜性與責任法案」(the Health Insurance Portability and Accountability Act of 1996, HIPAA)之定義。然而,與HIPPA最大的不同在於, HIPAA中僅以私人契約之隱私權政策間接地管理醫療資料外洩事件,但於暫行最終規則中直接課以相關主體一項明確且積極的法定通知義務。HITECH之規範主體,基於其注意義務,應於得知或可得而知之日起算,60日內完成通知義務;視醫療資訊外洩之嚴重程度,其通知之對象亦有所不同,必要時應通知當地重要媒體向外發布訊息,HHS也將會以表單方式公布於其網站中。 整體而言,HITECH首次課以規範主體主動向可能受影響個人通知醫療資訊外洩事件之義務,此為HIPPA過去所未規範者;其次HITECH也突破HIPAA過往基於契約關係執行相關隱私權及安全規定之作法,於法規上直接對於洩露醫療資訊之相關主體課以刑責,強化了違反HIPAA隱私權與安全規定之法律效果。惟值得注意的是,受限於美國國會對HHS提出最終規則之期限要求,HHS現階段所提出的版本僅屬暫行規定,最終規定之最終確切內容仍有待確定,也值得我們持續觀察。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
監視器無鉛製程 冠捷導入歐盟RoHS、WEEE政策實施在即,出身歐洲第一大品牌的飛利浦(Philips)率先響應,今年所有LCD監視器符合RoHS全面無鉛化,代工夥伴冠捷(AOC)隨第二季正式合併飛利浦顯示器事業部,也將導入無鉛製程。國內兩大LCD監視器製造大廠明基、光寶也已防患未然,製程無鉛化製程提早開跑。 飛利浦今年在台灣LCD監視器策略,其中之一是全面推展無鉛化產品線,W、P、B、S四大系列全面符合歐盟RoHS規定,鉛含量在○‧一%(1000ppm)以下,可說領先各品牌率先推出無鉛產品。 監視器製造大廠冠捷(AOC)已和飛利浦已簽訂顯示器事業部併購意向書,第二季起將正式啟動合併機制,而飛利浦在台灣僅留下採購、行政、台灣行銷業務部門。因此這套無鉛製程,也將如期導入至AOC的產線之中。至於國內製造大廠光寶、明基也已如期順利切換到無鉛製程。光寶目前綠色採購達成率已約七成,今年底則將達九成,因應製程無鉛化需要,還添購五部X光檢測設備,以期達到滴水不漏效果;至於明基明年起工廠端也不再生產舊款機種,一律符合無鉛化作業。 儘管無鉛製程難度相當高,不過對LCD監視器而言,挑戰最高卻是無汞化,因為冷陰極管(CCFL)內必含汞,所以歐盟規定裡則將CCFL燈管、投影機燈泡列為例外條款,不過隨著環保意識抬頭,LCD監視器業者已有以LED背光模組取代冷陰極管(CCFL)計畫。