紐約市政府於2018年8月通過「短期租賃規則」(Regulation of Short-term Residential Rentals)。該規則將於通過後180天生效適用,強制要求平台業者必須定期提供下列數據報告給紐約市政府:
若相關平台業者未提交報告,則須面臨1,500美元以下之罰鍰。目前紐約市是Airbnb在美國最大的市場,該項規則的通過及生效勢必會對Airbnb造成相當大的影響及成本負擔。因此Airbnb在該規則通過後不久,旋即向法院提起訴訟,聲稱該規範違反了平台用戶之隱私權及美國憲法第一及第四修正案所保障之權利。
紐約市政府方面則作出回應,這項規則可協助政府取得保護住房安全所需的關鍵資訊,並保證遊客及租賃者之安全,同時並打擊非法的短期出租。而該規則也顯示紐約政府對於短期日租套房之服務將趨向保守的態度。
英國內閣辦公室於2015年7月13日宣布開啟「2015年開放政府夥伴英國國家行動計畫」,認為身處於轉型於科學與技術、面臨了資訊革命的世界,資訊開放可以促使英國政府現代化作業,這也是讓英國邁向較佳未來的最好方式。現在英國社會已然是此一趨勢,而英國政府的任務就是讓其更佳發展,「開放政府夥伴國家行動計畫」(Open Government Partnership National Action Plan)就是英國政府規劃發展的藍圖,承諾將提供給民眾一更加開放及有責的政府。 而英國政府目前已就部分政策(資訊公開、反貪腐、財政透明以及公開政策形成過程)有相關發展,分述於下列七點摘要說明: 更高的有責性(accountability):當英國政府開始公佈其政府部門相關出差數據後,英國政府發現高階官員變得更加傾向於搭乘飛機時乘坐經濟艙,以減少開銷。而溫莎-梅登黑德皇家自治市鎮議會(Windsor and Maidenhead Council)發布了公部門建築物的即時能源使用資訊,因此協助公部門減少16%的能源帳單費用。 更佳的資訊管理:英國政府發現,將訊息公開並使其可以利用,促使英國政府本身成為更佳成熟的資訊使用者。不僅英國政府會具備更高的有責性,同時也更能獲得公眾的資訊,而資訊公開則可使英國政府的決策具有實證依據。 資訊更加公開:資訊公開的優點不僅可使英國政府獲得公眾之資訊,同樣地公眾亦可得到政府的資訊,進而提升英國政府公共服務的水準。 數據經濟(data economy):目前英國有上千家創業的新興公司正在設法取得政府創新利用的相關資訊,透過資訊的公開亦同時可幫助英國此類數據經濟的成長。 國際合作:英國政府認為於在政府透明化方面需要更多的國際合作。英國政府將以官方協助的立場公開資訊,支持採掘產業(extractive industries)財政透明的全球性標準,並承諾建立一個公司受益所有權(company beneficial ownership)的註冊中心單位,將會有關於英國各家公司最終擁有及實質管控者清楚的資訊來源,藉此打擊貪腐弊案。 地方授權:除了上述所提者,英國政府同時亦要將此規劃落實到各地,將授權予蘇格蘭、威爾斯、北愛爾蘭以及英格蘭的城市等地區。從蘇格蘭聯合政府的運作,到曼徹斯特其地方企業夥伴(Local Enterprise Partnership, LEP)公開資訊的利用,這些設置都可以作為彼此學習的借鏡,並將開放政府的原則擴散到全英國。 採取如維基(Wiki)的模式形成政策:英國政府認為應該要朝向維基百科(Wikipedia)運作的模式發展,於政策規劃方面採取與各方更高度合作的方式進行,可使資訊得以廣泛擴散。
日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)