Airbnb針對紐約新短期租賃法規進行訴訟

  紐約市政府於2018年8月通過「短期租賃規則」(Regulation of Short-term Residential Rentals)。該規則將於通過後180天生效適用,強制要求平台業者必須定期提供下列數據報告給紐約市政府:

  1. 在交易中住房的地址,須包括街道名稱、公寓或單位號碼、鄉鎮及郵遞區號。
  2. 短租房東的地址、電話及email、網頁地址、姓名及該平台的房東數量。
  3. 廣告的個別名稱及網頁地址。
  4. 關於短期租賃的說明:註明出租的是整間公寓還是單一房間。
  5. 該建築透過訂房網站提供短期租賃之天數。
  6. 短期租賃的所有費用。
  7. 若該平台代收租金費用,則需提供費用明細。

  若相關平台業者未提交報告,則須面臨1,500美元以下之罰鍰。目前紐約市是Airbnb在美國最大的市場,該項規則的通過及生效勢必會對Airbnb造成相當大的影響及成本負擔。因此Airbnb在該規則通過後不久,旋即向法院提起訴訟,聲稱該規範違反了平台用戶之隱私權及美國憲法第一及第四修正案所保障之權利。

  紐約市政府方面則作出回應,這項規則可協助政府取得保護住房安全所需的關鍵資訊,並保證遊客及租賃者之安全,同時並打擊非法的短期出租。而該規則也顯示紐約政府對於短期日租套房之服務將趨向保守的態度。

相關連結
你可能會想參加
※ Airbnb針對紐約新短期租賃法規進行訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8132&no=67&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
德國聯邦網路局發布電信網路安全要求要點

  德國聯邦網路局(BNetzA)於2019年3月7日公布電信網路營運安全發展需求目錄關鍵要點。該要點係德國聯邦網路局電信通訊法第109條第6項規定,與聯邦資訊安全局(BSI)和德國聯邦資料保護與資訊自由委員會(BfDI)達成協議後制定,並由德國聯邦網路局發布之。此尤其適用於在德國發展5G網路,因該技術係為未來核心關鍵基礎設施,為確保技術發展之安全性,電信網路公司必須滿足相關安全要求。鑑於5G對未來競爭力極具重要性,故用於構建5G之技術必須符合最高安全標準,且應盡可能排除安全問題,該標準同樣適用於所使用的硬體和軟體。附加的安全目錄要點基本內容如下: (1)系統僅允許從嚴格遵守國家安全法規及電信保密和隱私法規,且值得信賴之供應商處獲得。 (2)必須定期且持續監控網路流量異常情況,如有疑問,應採取適當的保護措施。 (3)僅可使用經聯邦資訊安全局對其IT安全性檢查核可且取得認證之安全相關的網路和系統組件(以下簡稱關鍵核心組件)。關鍵核心組件僅能從獲得信賴保證之供應商/製造商中取得。 (4)安全相關的關鍵核心組)應在交付期間進行適當之驗收測試後方能使用,且須定期和持續進行安全檢查。關鍵核心組件之定義將由德國聯邦網路局和聯邦資訊安全局共同協議訂定。 (5)在安全相關領域,只能聘用經過培訓之專業人員。 (6)電信網路營運商須證明所使用的產品中,實際使用經測試合格之安全相關組件硬體和供應鏈末端的原始碼。 (7)在規劃和建立網路時,應使用來自不同製造商的網路和系統組件,以避免類似「單一耕作」(Monokulturen),即避免技術生態圈無法均衡發展,以及易受市場波動影響之不良效應。 (8)外包與安全相關勞務時,僅可考慮有能力,可靠且值得信賴的承包商。 (9)對於關鍵且與安全相關的關鍵核心組件,必須提供足夠的冗餘(Redundanzen)。   鑑於德國於3月中旬已拍賣5G頻譜,聯邦政府將大力推廣附加要求,並讓相關企業可以清楚了解進一步計畫。為確保立法層面之具體要求,聯邦政府計畫將對電信法第109條作重大修訂。明確規定操作人員必須證明符合安全規範,並由法律規範相關認證義務。針對關鍵基礎設施中使用的關鍵核心組件應來自可信賴之供應商/製造商,應適用於整體供應鏈。此外,德國聯邦政府擬針對聯邦資訊安全局法進行修訂,包括關鍵基礎設施、其組件可信賴性之相關規範。依聯邦資訊安全局法第9條規定,將在認證框架內提供可信賴性證明。

保護、分級與言論(下)

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國聯邦審計署發布先進空中交通議題研究報告,將有利於航空轉型

  美國聯邦審計署(Government Accountability Office, GAO)於2022年5月9日發布「航空轉型:經利害關係人確認之先進空中交通議題」(Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced Air Mobility')研究報告。未來,先進空中交通(Advanced Air Mobility, AAM)服務可透過小型或高度自動化(highly-automated)電動垂直起降航空器(eVTOL)翱翔於天際,不僅可提供載人或載物服務、減少交通壅塞,並可應用於救援與醫療運輸等領域。GAO透過訪談36位利害關係人,意識到AAM發展關鍵在於相關法制環境之整備速度。基此,GAO於研究報告中,整理當前各AAM新創業者於開發與落實上面臨之4大問題,分別簡述如下: (1)航空器檢定標準:美國聯邦航空總署(Federal Aviation Administration, FAA)對於航空器之檢定規範,目前尚未涵蓋具備AAM新功能之載具,如電力推進或垂直起降等。 (2)起降場與電力之基礎設施:FAA尚未制定垂直機場降落設施,及航空器電池充電需求之電力基礎設施相關標準。 (3)提高公眾載具安全性接受度:AAM產業須證明此類航空器之安全性、可靠性、低噪音與商用可行性,以支持該產業之發展與成長。 (4)作業人員所需之各種培訓與認證標準:飛行員與維修技術作業人員需接受相關新功能培訓。惟利害關係人指出可能面臨高教育成本、缺乏工作場域多樣性、機會意識(awareness of opportunities)不足,及培訓能力有限等問題。

TOP