英國因劍橋分析個資外洩事件開罰臉書

  英國資訊專員辦公室(Information Commissioner’s Office, ICO)於2018年10月24日公告針對臉書公司(Facebook Ireland Ltd. & Facebook Inc.)之劍橋分析(Cambridge Analytica)個資外洩事件,依據英國資料保護法(Data Protection Act 1998)第55A條之規範,裁罰臉書公司50萬英鎊之罰鍰。

  自2018年3月劍橋分析違法取得與使用臉書個資事件爆發以來,估計約有8700萬筆臉書上的個人資料遭到違法使用,引起全球對於網路個資保護的重視。在遭到違法取得與使用的個資當中,也包含了歐盟以及英國臉書使用者的個資,因此英國ICO有權對此事件展開調查並對臉書公司進行裁罰。

  根據英國ICO的調查,自2007年至2014年間,臉書公司對於其平台上的個資處理(processed)有所不當,違反資料保護法之資料保護原則(Data Protection Principle,DPP),包含未適當處理個人資料(DPP1),以及未採取足夠的技術與作為防止未經授權或違法使用個資(DPP7),致使劍橋分析得以透過臉書公司提供之API違法取用臉書使用者個資。

  由於劍橋分析事件發生時,歐盟GDPR(General Data Protection Regulation)尚未正式上路,因此英國ICO依據事件發生時之法律,亦即基於歐盟資料保護指令(Directive 95/46/EC)所訂定之英國資料保護法,裁處臉書公司50萬英鎊的罰款;若依據基於GDPR之新版英國資料保護法(Data Protection Act 2018),臉書公司將可被裁處最高1700萬英鎊或年度全球營業額4%之罰款。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 英國因劍橋分析個資外洩事件開罰臉書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8145&no=64&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
歐洲專利局闡明CRISPR專利優先權認定的裁決理由

  歐洲專利局(European Patent Office,下簡稱EPO)於2020年11月發布了裁定撤銷歐洲專利EP2771468的書面理由。EP2771468是the Broad Institute of Massachusetts Institute of Technology(以下簡稱Broad Institute)持有的一項關於CRISPR(clustered, regularly interspaced, short palindromic repeats)技術的專利。2020年1月,EPO的上訴委員會(Board of Appeal,下簡稱BoA)裁定在該專利的優先權要求被駁回後,專利應予以撤銷。   CRISPR是相對簡單但功能強大的基因編輯工具,使科學家能夠更改DNA序列並修飾基因功能。它具有改變醫學、診斷、治療和預防多種疾病的潛力,已被用於開發診斷試劑盒,可用於檢測傳染病,例如Covid-19。該技術預估在未來五年的價值將超過50億美元。   一般而言,專利申請日是評估專利有效性的日期,但有的專利可能會要求已揭露該發明之較早專利申請的申請日作為優先權日。在本案裡,專利的優先權日期尤為重要,因為還有許多其他機構和研究人員聲稱在Broad Institute之前就已經發現CRISPR技術。   在2018年,EPO的異議庭(Opposition Division)認為EP2771468專利無權享有部分專利的優先權。因為其主張優先權的美國專利臨時案共有四名申請人,但在EPO提交專利時,有一位申請人未包含其中。因此,異議庭認為,該專利不能主張美國專利的優先權,導致EP2771468因為在申請日前有其他公開文獻而喪失新穎性。   Broad Institute提出上訴,但BoA駁回了上訴,並指出需要所有申請人在初始申請和後續申請中都列出才能享有優先權。   由於優先權制度是在申請專利保護時常會運用的布局手段,後續在運用優先權時,應特別注意申請人的一致性,避免因優先權無法主張而影響專利的有效性。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

無所不在的間諜軟體

社群媒體發展網路不當言論管理機制之趨勢觀察

TOP