2018年6月5日歐盟法院針對Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH訴訟進行先訴裁定,擴大解釋《資料保護指令》(Directive 95/46/EC)之「資料控制者」範圍,認為Facebook和粉絲專頁管理者皆負有保護訪客資料安全的責任。由於「資料控制者」定義在《資料保護指令》與《一般資料保護規則》(GDPR)相同,因此裁定將影響未來使用社群媒體服務和平台頁面的個資保護責任。
本案起因德國Schleswig-Holstein邦獨立資料保護中心要求 Wirtschaftsakademie教育服務公司在Facebook經營之粉絲專頁必須停用,其理由認為Facebook和Wirtschaftsakademie進行之Cookie資料蒐集、處理活動並未通知粉絲成員且因此從中獲利,然Wirtschaftsakademie認為並未委託Facebook處理粉絲成員個資,當局應直接對Facebook要求禁止蒐集處理。歐盟法院認為Wirtschaftsakademie使用Facebook所提供之平台從中受益,即使未實際擁有任何個資,仍被視為負共同責任(jointly responsible)的資料控制者,應依具體個案評估每個資料控制者責任程度。
在原《資料保護指令》並未有「資料控制者需負共同責任」之規定,本案擴大解釋資料控制者範圍,對照現行GDPR屬於第26條「共同控制者」之規範主體,然而本案將資料控制者擴張到未實際處理資料之粉絲專頁管理者,是否過於嚴格?且未來如何劃分責任與義務,皆有待觀察。
AT&T 在 8 月 24 日 控告 25 個販賣資料的掮客( data broker ),在其訴狀中指出大約有 2500 個客戶的個人紀錄被非法竊取, AT & T 已通知相關客戶已被通知並凍結其帳戶。 AT&T 並未於訴狀中明確地列出被告的名字,表示目前必須利用電腦郵件以及電腦 IP 位址來確認被告為哪些人, AT&T 宣稱一旦這些資料掮客經鑑定被確認後,除了賠償 AT&T 的損害之外,還須償還其販賣資料所獲得的不法利益。 PrivacyToday.com 網站的總裁表示,「買資料的人無處不在,但只有少數的人會非法竊取客戶資料,而這少部分的人大多都可以被追蹤的到。」 這並非唯一的案例,未來將會有越來越多相似的問題產生。被竊取的資料不僅僅只有電話紀錄,還有銀行、醫療或其他個人敏感資料,每分每秒都有人在想著如何取到私密資料並從中獲得不法利益。目前州及聯邦已經考慮立法,將有關電話紀錄的欺騙行為判定為不法行為。
美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。 為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。 馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。 雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。 馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。