歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。

  在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。

  其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:

  (一)可能具技術性

  • 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。
  • 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。

  (二)可能不具技術性

  • 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09)
  • 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。

  在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。

  近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8156&no=64&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
世界智慧財產權組織執行ICANN/UDRP決定之趨勢分析

美國總統歐巴馬宣布增加強化美國網路安全預算經費

  為強化並有效因應網路安全相關議題,美國總統歐巴馬日前於4月10日提出在2014財政年度(於2013年10月開始起算)增加強化網路安全經費之建議,期待透過藉由加強並建置相關網路安全機制的方式,有效解決目前美國所面臨來自中國、伊朗、俄國、以及其他國家之的網路安全威脅;同時,其亦希望藉此厚植並改善美國政府,以及私人企業的電腦網絡防禦能力。   本次由美國總統歐巴馬所提出的國家網路安全策略主要可區分為二部分:1. 加強美國網路事件(cyber incidents)的彈性度,以及2. 減少網路威脅事件。首先針對加強美國網路事件彈性度的部份,主要會透過a. 強化美國數位基礎建設,進而能有效抵禦滲透和干擾,b. 改善美國對於複雜和敏捷的網路威脅防禦能力,以及c. 培養針對不同類型的網路事件,皆能快速應變並恢復的能力,這三個方法來加以落實。而就減少網路威脅事件的部份,則計畫以透過a. 與美國友邦結盟的方式,共同研議國際網路規範,b. 強化網路犯罪的法律執行能力,和c. 遏止潛在對手就現有之美國網路漏洞採取不當行動,三個策略模式的實施來加以實踐。然而除了上述的兩個策略及其子項的具體落實外,美國政府亦強調串連各政府部門,以及私人企業團體間之合作重要性,以及建立一個能夠使得網路維護人員及其他相關人員,得以快速取得相關網路安全資訊的便捷管道亦為重要。   隨著全球資通訊網路交流互動以及依賴程度日益增長,如何有效兼顧個人網路安全隱私及使用自由,並同時確保網路資訊流通的安全性,乃為目前強加網路安全的重要關注焦點。本次美國總統歐巴馬所提出的網路安全推動策略走向,及其如何加以落實,實值得持續關注。

從法規及經營面探討電力線通訊開放的相關問題-從美國聯邦通訊委員會的管制措施談起

Angie's List起訴Amazon Local侵害營業秘密

  消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。   該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。   Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。

TOP