歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。
在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。
其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:
(一)可能具技術性
(二)可能不具技術性
在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。
近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)2023年5月發布了一份名為《品牌、專利與企業績效表現的研究報告》(Brands, patents and company performance study),分別針對全球前100大上市公司及新加坡前100大上市公司進行分析,說明智慧財產等無形資產對於企業發展的重要性。 首先,IPOS在報告中對全球前100大上市公司進行分析,若該上市公司同時名列「全球500大最有價值品牌」(英國知名品牌諮詢機構Brand Finance每年發布)及/或「全球專利前250強」(美國知名專利研究公司IFI CLAIMS Patent Services每年發布),報告中將這類上市公司定義為持有最有價值品牌或最強專利組合的企業。這類企業與全球前100大上市公司中的其他企業相比,平均收入(revenue)是其他企業的2.2倍、淨利(net profit)是其他企業的1.9倍、市值(market capitalisation)是其他企業的2.3倍。 其次,本報告以新加坡前100大上市公司為分析對象,其中持有最有價值品牌(同時名列「新加坡100大最有價值品牌」)及/或最強專利組合(根據PatSnap專利資料庫的檢索資料定義)的上市公司,與新加坡前100大上市公司中的其他企業相比,平均收入是其他企業的2.4倍、淨利是其他企業的1.8倍、市值是其他企業的2.7倍。 由新加坡發布的報告可知,品牌或專利等無形資產對於企業維持競爭優勢的重要性,企業應將智慧財產布局與管理列為公司治理的重點,持續確保企業無形資產的價值(譬如企業若未持續落實商標布局與管理,將會削弱品牌價值),以強化企業的競爭力。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟《歐洲資料戰略》歐盟執委會針對未來10年歐洲AI開發與開放資料運用方向等核心議題,於2020年2月19日公布一系列數位化政策提案,其中之一即為提出歐洲資料戰略(European Data Strategy)。本戰略提出資料開放共享政策與法制調適框架,宣示其目標為建構歐洲的資料單一市場(single market for data),視資料為數位轉型的核心,開放至今尚未被使用的資料。歐盟期待商界、研究者與公共部門等社群的公民、企業和組織,得透過跨域資料的蒐集與分析,改善決策的作成基礎或提升公共服務品質,為醫療或經濟等領域帶來額外利益,同時促進歐盟推動人工智慧發展及應用。 本戰略揭示了資料單一市場的建構框架,包含資料必須能在歐盟內與跨域流通並使所有人受益、全面遵守如個資保護、消費者保護與競爭法等歐盟相關規範、以及資料取用(access)和使用的規定,應平等實用且明確,並以之建立資料治理機制;同時,為在技術面強化歐洲數位空間之能力,以完善資料共享所需之資料基礎設施,應創建歐洲資料庫(European data pools),預備將來進行巨量資料分析與機器學習。在上述框架下,本戰略同時擬定了數個具體的措施與制度調修方向如下:(1)建構資料跨部門治理與取用之法規調適框架:包括於2020年第4季提出歐洲共同資料空間管理之立法框架,於2021年第1季提出高價值資料集(high-value data-sets),評估於2021年提出資料法(Data Act)以建構企業對政府或企業間的資料共享環境、調適並建立有利於資料取用之智慧財產權與營業秘密保護框架;(2)強化歐洲管理、處理資料之能力與資料互通性:建構資料共享體系結構並建立共享之標準及治理機制、於2022年第4季啟動歐洲雲端服務市場並整合所有雲端服務產品、於2022年第2季編纂歐盟雲端監管規則手冊;(3)強化個人有關資料使用之權利:從協助個人行使其所產出資料相關權利之角度,可能於資料法中優化歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第20條之資料可攜權,如訂定智慧家電或穿戴裝置之資料可讀性格式;(4)建構戰略領域與公共利益領域之歐盟資料空間:針對戰略性經濟領域與攸關公共利益的資料使用需求,開發符合個資保護與資安法令標準之資料空間,主要用於保存製造業、智慧交通、健康、財務、能源、農業、公共管理等領域之資料。
日本內閣官房提出法案規範醫療個資去識別化業者,以促進研發利用日本內閣官房所屬之健康‧醫療戰略室於2017年3月, 向國會提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》(医療分野の研究開発に資するための匿名加工医療資訊に関する法律案)。「健康‧醫療戰略室」係於2013年2月成立,並於同年8月根據《健康‧醫療推進法》設置「健康‧醫療戰略推進本部」。該部於2017年3月10日提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》,針對醫療資訊匿名加工業者進行規制,使他人可安心利用經過去識別化處理之資訊,以便促進健康、醫療方面之研究及產業發展,形成健康長壽社會。上開法案主要可分為兩個部份︰ 國家責任與義務︰政府應提出必要政策與制定基本方針。 匿名加工醫療資訊業者之認定︰該部份又可分為匿名加工醫療資訊業者(以下簡稱業者)之認定與醫療資訊處理。 針對上述第2點之認定,為確保資訊安全,政府應設置認定機構,以便確認業者符合一定基準,並具備足夠之匿名加工技術,可為醫療個資去識別化。此外,在醫療資訊處理方面,該法案則規定醫療機關可在事先告知本人,且本人未拒絕提供時,將醫療資訊提供給業者。
美國「刑事鑑識演算法草案」美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。