歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。

  在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。

  其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:

  (一)可能具技術性

  • 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。
  • 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。

  (二)可能不具技術性

  • 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09)
  • 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。

  在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。

  近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8156&no=64&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
WIPO的廣播協議激怒了podcasters

  英國支持一項由智慧財產權組織(World Intellectual Property Organization/WIPO)草擬的廣電協議(Treaty on the Protection of Broadcasting Organizations),引起一陣反對聲浪。反對者聲稱,這無疑是送給大財團一項操控媒體內容製作的新權利。 2006年6月21日,在西班牙召開的此項協議的討論會議,賦予無線、有線廣電業者和網路廣播業者一項全新的智慧財產權利。業者將對他們所傳輸的任何作品,擁有「五十年、類似著作權的權利(copyright-like rights)」。此協議的目的是為了讓法律更合乎時代性,特別是要處理數位傳送上所產生剽竊數位訊號的問題。不過,網路廣播業者和podcasters卻擔心,如果WIPO將該規範擴張到網路,將使原無需經過授權散播的作品,或者內容是獲得「Creative Commons」授權,可無限制次數的發表,在某些情況下更可不付費的作品,反將經過網路廣播的傳送,讓一些團體組織獲得新的權利。如此一來,恐怕除了限制民眾獲取文化知識的自由外,更會讓那些原屬於創作者和公眾的權利,落入廣電業者手中。Podcasters認為,podcasting 和廣播不能相提並論,更不該受同樣法規的規範。

美國FDA將基因檢測以醫療器材列管

  美國FDA在七月間針對多家提供大眾基因檢測服務(direct-to-consumer genetic tests, DTI genetic tests)的公司發出通知函,表示將對該產業進行規管。FDA在各通知函中明白表示,其認為收信公司所提供的基因檢測服務,符合其主管之醫療器材管理法規對於體外診斷器材(in vitro diagnostics)之定義。根據美國聯邦法律,人類用醫療器材採用分級管理的概念,在上市前必須依其風險等級進行上市前通報或申請核准,以確保其分析與臨床之有效性。FDA認為,由於這些公司的基因檢測並未依法提出上市前通報或申請核准,涉有違法之嫌。   FDA採取此項措施,明顯是為了保護消費者,避免其受到未經臨床檢驗的檢測結果之誤導。然事實上國際間對於是否透過法令、以及如何規範大眾基因檢測服務,並無一致性看法。迄今,大眾基因檢測服務在許多國家都是在法令混沌未明的狀態下銷售,也引發了許多問題。對於FDA此一政策態度,有認為以法令方式規範此種服務,將會扼殺這個還在萌芽發展終的產業;也有認為,這算是對消費者遲來的保護。   大眾基因檢測服務的管理,顯示既有法令面對新興科技發展之管理窘迫性,也代表各國政府在保護消費大眾與促進新興產業發展之間,著實不易從中找到利益權衡之點,其科技管理面臨前所未有的新挑戰。

美國參議院通過《兒童網路隱私保護法》與《兒童網路安全法》,有望加強兒少網路安全保護力道

在數位時代,兒童及青少年長時間使用網際網路已成為生活常態,然而,兒少在高度使用社群媒體的同時,也透過演算法大量獲取諸如飲食失調、自殘等「有毒內容」(toxic content)。在享受網路便利性的同時,兒少也面臨遭受騷擾、霸凌,被迫轉學甚至輕生等困境,心理健康面臨危機。為解決前揭問題,美國參議院於2024年7月30日通過《兒童網路隱私保護法》(Children’s Online Privacy Protection Act, COPPA)修正法案及《兒童網路安全法》(Kids Online Safety Act, KOSA)之立法,加強兒少網路安全之保護。 COPPA早於1998年制定,並於2000年開始施行,該法案對於網路營運商蒐集未滿13歲兒童之個人資料相關隱私政策訂有規範,惟自訂定後迄今約25年,均未因應時代變遷做出調整,終於在本次會期提出修正草案。另KOSA之立法重點,則在於要求網路平台業者對兒童預設提供最高強度隱私設定,並建立控制措施,提供父母保護子女及認知到有害行為的機制,課予網路平台業者預防及減輕兒童陷於特定危險(如接收宣傳有毒內容之廣告)之義務等。此二法案經參議院投票通過後,合併為一案送交眾議院審核,重點說明如下: 1.將網路隱私保護主體擴張至未滿13歲之兒童及未滿17歲之青少年(下稱兒少),禁止網路平台業者在未經兒少使用者同意情況下,蒐集其個人資料。 2.禁止網路平台業者對兒少投放定向廣告(targeted advertising)。 3.為保護「合理可能會使用(reasonably likely to be)」網路平台的兒少,調整法案適用的「實際認知(actual knowledge)」標準,將適用範圍擴及至「合理可能被兒少使用(reasonably likely to be used)」的網路平台。 4.建立「清除鈕(eraser button)」機制,使兒少及其父母得以要求網路平台業者在技術可行情況下,刪除自兒少所蒐集之個人資料。 5.要求商務部(the Secretary of Commerce)於新法頒布後180日內,應成立並召集兒童網路安全會議(Kids Online Safety Council),進行包含識別網路平台對兒少造成危害之風險,提出相關評估、預防及減輕危害之建議措施及方法、進行與網路對兒少造成危害相關主題之研究等業務。 觀本次可謂美國對於兒少網路保護之重大進展,惟此法案後續是否能順利提請總統簽署成法,正式具約束效力,仍須持續關注眾議院未來動向。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP