Facebook粉絲專頁管理者是否負有保護用戶個資隱私之控制者(Data Controller)責任

刊登期別
第30卷,第12期,2018年12月
 
隸屬計畫成果
自主研究
 

  2018年6月5日歐盟法院針對Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH訴訟進行先訴裁定,擴大解釋《資料保護指令》(Directive 95/46/EC)之「資料控制者」範圍,認為Facebook和粉絲專頁管理者皆負有保護訪客資料安全的責任。由於「資料控制者」定義在《資料保護指令》與《一般資料保護規則》(GDPR)相同,因此裁定將影響未來使用社群媒體服務和平台頁面的個資保護責任。

  本案起因德國Schleswig-Holstein邦獨立資料保護中心要求 Wirtschaftsakademie教育服務公司在Facebook經營之粉絲專頁必須停用,其理由認為Facebook和Wirtschaftsakademie進行之Cookie資料蒐集、處理活動並未通知粉絲成員且因此從中獲利,然Wirtschaftsakademie認為並未委託Facebook處理粉絲成員個資,當局應直接對Facebook要求禁止蒐集處理。歐盟法院認為Wirtschaftsakademie使用Facebook所提供之平台從中受益,即使未實際擁有任何個資,仍被視為負共同責任(jointly responsible)的資料控制者,應依具體個案評估每個資料控制者責任程度。

  在原《資料保護指令》並未有「資料控制者需負共同責任」之規定,本案擴大解釋資料控制者範圍,對照現行GDPR屬於第26條「共同控制者」之規範主體,然而本案將資料控制者擴張到未實際處理資料之粉絲專頁管理者,是否過於嚴格?且未來如何劃分責任與義務,皆有待觀察。

※ Facebook粉絲專頁管理者是否負有保護用戶個資隱私之控制者(Data Controller)責任, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8155 (最後瀏覽日:2025/07/03)
引註此篇文章
你可能還會想看
美國加州日前開始審查輕量自動駕駛運輸載具應用之測試申請

  美國加州行政法辦公室(the Office of Administrative Law)於2019年12月17日宣布,根據日前通過之修訂規範,該州車輛管理局(the Department of Motor Vehicles)將審查州內公共道路上進行輕型自動駕駛(下稱自駕)運輸服務商業化應用測試之申請,換言之,業者如取得車輛管理局之核准,可以測試重量未達10,001磅之自駕運輸車輛(如一般客車、中型貨車、可載運雜貨類商品的客貨兩用車等)服務。另外,業者如欲就該自駕運輸服務收取運輸費用,則必須另向車輛管理局申請佈署(deployment)許可,即商業化或供公眾使用之許可。   不論何種自駕運輸車輛服務之測試,均須遵循現行測試、佈署之申請程序要求,並根據車輛管理局的核准內容進行有或無安全性駕駛人(safety driver)的自駕運輸服務測試,簡要整理不同規範要求如下: 如為有安全性駕駛人之測試與應用,有以下要求: 證明車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 維持測試駕駛人(test driver)的培訓規劃,並且證明每位測試駕駛人均完成培訓。 確保測試駕駛人維持潔淨(clean)的駕駛記錄。 確保測試駕駛人在測試期間乘坐在駕駛座上監控車輛的運行狀況,並在有需要的時候可以即時接管車輛。 須提交年度脫離(或譯為解除自駕)報告(disengagement report),且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。   如為無安全性駕駛人之測試與應用,有以下要求: 提供測試自駕運輸服務所在地方當局之書面通知以茲證明。 證明自駕測試車輛符合以下要求:   (1)車輛與遠端遙控操作者間具有通訊連結。 (2)車輛與執法部門間的通訊方式。 (3)製造商將如何監控測試車輛之說明 提交一份與執法部門如何互動交流的計畫。 證明自駕測試車輛符合聯邦機動車輛安全標準(FMVSS),或提供國家公路交通安全管理局(NHTSA)之豁免監管證明。 證明自駕測試車輛可以在沒有駕駛人存在的情況下可以自主運行,並屬於美國汽車工程師協會(SAE)標準等級4、等級5之車輛。 證明測試車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 通知車輛管理局將要測試營運的區域範圍。 維持遠端遙控操作相關培訓規劃,並證明每位遠端遙控操作者均完成培訓。 須提交年度脫離報告,且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。   如自駕運輸服務擬商業化或供公眾使用,申請佈署之相關要求如下: 證明車輛:   (1)配備自駕車輛資料紀錄器,此技術是根據加州車輛法規(California Vehicle Code)設計來偵測並反應道路實際狀況 (2)符合聯邦機動車輛安全標準或提供國家公路交通安全管理局之豁免監管證明。 (3)符合現行關於網路攻擊、非經授權侵入或錯誤車輛控制指令之防護、偵測與回應等產業標準。 (4)製造商曾進行測試與驗證,並有足夠信心將車輛佈署於公用道路上。 提交一份與執法部門如何互動交流的計畫複本。 如果車輛不需要駕駛員,製造商必須證明其他事項:   (1) 車輛與遠端遙控操作者間具有通訊連結。 (2) 當碰撞事故發生時,車輛可以顯示或傳輸相關資訊予車輛所有人或操作員。   綜上所述,若要在加州進行自駕運輸車輛服務測試,須視其服務型態及是否涉及佈署,以遵循不同規範要求,申言之,服務採行有無安全性駕駛人與是否商業化或供公眾使用,二者為併行關係,舉例來說,如業者擬佈署有安全性駕駛人之商業運輸服務,則須同時符合有安全性駕駛人之測試與應用以及佈署等要求。加州對於自駕車輛運輸服務商業化之措舉,值得我國借鏡以完善自駕車輛運輸應用之推動。

何謂德國「EXIST補助計畫」?

  德國在2000年以後便將聯邦政府補助的其中一個方向集中在鼓勵科技創業,主要推動機關為聯邦教育暨研究部(Bundesministerium für Bildung und Forschung, BMBF)與聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie, BMWi)。其中BMWi的EXIST計畫訴求建立一個科技創業有善的環境,並分三項子計畫運作:EXIST創業文化計畫(EXIST-Gründungskultur),EXIST創業補助計畫(EXIST-Gründerstipendium),EXIST研發成果移轉計畫(EXIST-Forschungstransfer)。   其中,EXIST創業文化計畫著重於在學研機構內塑造創業文化,誘發學研機構創業潛力與企業家性格;EXIST創業計畫則是鎖定學研機構內的個人(科學家、研究生、大學生),希望透過對這些個人的生活補助,使其商業發想可化為營運計畫書(Businessplan),進而開發成為商品或服務;EXIST研發成果計畫則是透過經費補助,鼓勵學研機構內的研究團隊利用設立衍生公司方式運用研發成果,在創業前的籌備階段與公司設立初期導入專業團隊,協助評估相關的創業理念、經營模式、財務評估與資金運用等規劃是否妥適,使公司創立的籌備更為妥善且禁得起市場考驗。

美國專利商標局宣布快軌上訴試驗計畫

  美國專利商標局(The United States Patent and Trademark Office, USPTO)於今年7月1日發布新聞稿,即專利審判及上訴委員會(Patent Trial and Appeal Board, PTAB)開始加速處理單方上訴的計畫。該計畫名為「快軌上訴試驗計畫(Fast-Track Appeals Pilot Program)」並於今年7月2日正式啟動。   根據該計畫,專利審判及上訴委員會上訴裁決的目標時間預計為該上訴被賦予快軌(即批准加速審查)之日起六個月內,此與美國專利商標局之期望相符。蓋目前單方面上訴的裁決時間平均約14個月,因此,對於申請該計畫的人來說,該計畫平均應將上訴程序縮短約8個月。惟申請該計畫所需費用為400美元,且被批准的申請案會被限制在每季125件,會計年度最多500件,預計施行一年。   美國商務部負責智慧財產權事務副部長兼USPTO局長Andrei Iancu表示:「這是USPTO史上首次,申請人將能夠加快專利審查和單方上訴的速度,從而能較典型申請案約一半的時間內,就其最重要的發明做出決定。」。PTAB首席法官Scott Boalick亦表示:「近年來,我們取得了長足的進步,將上訴待決時間從2015年的平均30個月減少到目前的平均14個月。很高興PTAB現在能夠為申請人提供更快的途徑,從而使發明人和企業能夠更快地將其專利發明商業化。」   值得一提的是,我國智慧財產局亦有發明專利加速審查(Accelerated Examination Program, AEP)及商標加速審查機制。而AEP更早於民國98年1月1日起試辦實施,依據申請事由之不同,智財局將在申請人齊備相關文件後,於6個月內或9個月內發出審查結果通知。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP