自駕車之發展與挑戰-以德國法制為借鑑

刊登期別
第30卷,第12期,2018年12月
 
隸屬計畫成果
經濟部技術處科技專案研發成果
 
摘要項目
  交通領域的自動化、聯網化及數位化,驅動自動駕駛及智慧運輸系統等技術之快速發展。目前已有許多國家開放自動駕駛道路測試,德國更為龐大的汽車產業清除自駕車開發及測試之障礙,透過修法允許自駕車有條件於道路使用,除了帶來更多的便利性及經濟成長外,自動駕駛的利用也伴隨許多法制議題有待進一步討論,本文將介紹歐盟與德國自駕車相關法制政策發展,並進一步聚焦於自駕車道德倫理議題及預防性措施、個資保護與資料活用議題、及民事責任歸屬等議題,並從國外相關經驗作為我國法制發展之參考。

本文為「經濟部產業技術司科技專案成果」

※ 自駕車之發展與挑戰-以德國法制為借鑑, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8170&no=64&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
你可能還會想看
美國Uber被訴利用軟體應用程式追蹤用戶位置資訊

  美國電子隱私資訊中心(The Electronic Privacy Information Center, EPIC)向聯邦貿易委員會(Federal Trade Commission, FTC)檢舉Uber利用手機軟體"God view"追蹤並蒐集軟體用戶(乘客)位置資訊,並利用該資訊發送廣告給乘客。EPIC主張該作法為違法、詐欺的商業模式。   議員Al Franken對該軟體用戶服務條款也提出質疑,因該服務條款載明即使用戶終止使用,該軟體仍將繼續蒐集用戶的位置資訊,並可無限期使用用戶的個人資料。雖然Uber後續對該服務條款進行增修,但仍對外主張保有最後解釋的權利。   EPIC認為目前依「駕駛隱私法」(Driver's Privacy Act )的規定,除具要求提供車輛資料的法源依據,或個人同意並被告知資料將如何使用之情形,才可以蒐集該車輛資料以維護駕駛隱私,否則不得蒐集與該車輛的任何記錄與資料。然而,EPIC亦認為應立法禁止使用軟體追蹤乘客與蒐集其資料。EPIC同時也建議應制定法規限制 Google、Facebook、Whatsapp、Snapchat等公司追蹤及蒐集顧客資料。對此,Facebook僅表示會確保用戶的位置資訊不被濫用,而Google則拒絕對此發表評論。   另外,EPIC認為Uber蒐集用戶位置資訊,並隨著時間的推移來追蹤用戶(乘客)動向資料並進行廣告行銷,對用戶的隱私權保護並不完整,且用戶資料也有被盜取之可能,因此,EPIC希望FTC能對Uber"God view"軟體進行調查,希望促成規制用戶(乘客)資料蒐集、處理與利用的商業模式。

美國聯邦最高法院禁止警察在未取得令狀前搜索手機內容

  2014年6月25日,美國聯邦最高法院就Riley v. California一案作出判決,否定了附帶搜索(註)亦適用於行動電話的見解,並要求警察在查看嫌犯手機的內容前必須取得搜索票。   法院見解認為,由於手機裡的資料顯然不會造成執法者人身安全的危險,而在警察取得搜索票的這段期間內,資料也不可能遺失(甚至可以透過切斷手機連線功能,防免資料因遠端移除或加密而遺失),因此手機內容應不在附帶搜索的適用範圍內。判決中另指出,智慧型手機已經成為人們日常生活中無時無刻、無所不在的一部分,其中含有大量的個人資訊,包括通聯紀錄、標記有日期及地點的照片與影片、網路搜尋及瀏覽紀錄、購物清單及GPS定位等,若允許警察在未取得搜索票的情況下查看嫌犯手機,將有可能嚴重侵犯到個人隱私。   首席大法官John Roberts表示:「如果更進一步地細究系爭隱私利益之範圍,用戶在現代手機上所看到的資料,事實上並不儲存在裝置本身。將手機看作一個容器並對其內容實施附帶搜索,這樣的預設是有點勉強的,尤其當手機被用來讀取儲存在他處的資料時,這種說法更是完全無法成立。」   在其協同意見書中,大法官Samuel Alito也認為,相對於非電子資訊,法院為電子資訊提供了更多的隱私保護。同樣是通聯記錄,如果是從嫌犯口袋裡扣押的紙本帳單取得,在法律上毋須取得令狀即得搜索,但如果是儲存在手機裡就不是這麼一回事了。   註:為保護執法者人身安全並防免被告湮滅證據,我國刑事訴訟法第130條規定,檢察官、檢察事務官、司法警察官或司法警察逮捕嫌犯或執行拘提、羈押時,雖無搜索票,得逕行搜索其身體、隨身攜帶之物件、所使用之交通工具及其立即可觸及之處所,學說上稱作「附帶搜索」,為令狀搜索原則之例外。

紐約市實施《生物辨識隱私法》強化生物特徵保護

  伴隨人工智慧、大數據及雲端運算浪潮,生物辨識技術逐漸成為日常生活的一部分。所謂生物辨識技術,是指利用個人獨特之生物特徵辨識個人的技術。生物特徵包含任何人類生理或行為特徵,只要能夠滿足普遍性、獨特性、不變性及可蒐集性 ,即可作為生物辨識之資訊。由於生物辨識技術能利用生物特徵達到識別與驗證個人身分,因而引發公眾對隱私、資安等議題的關注。   對此,紐約市於2021年7月21日也開始正式施行《生物辨識隱私法》(biometric privacy act) ,期能藉由限制業者利用生物辨識技術以及賦予消費者訴訟權利作法,促成隱私權的週全保障。   該法主要有三大部分: 一、規範生物辨識資訊範圍,包含但不限於(1)視網膜或虹膜掃描(2)指紋或聲紋(3)手或臉部立體掃描或是其他可用於識別之特徵。就前開生物特徵,要求業者應在所有消費者入口處放置清晰顯眼的標誌,搭配簡單易懂方式揭露其蒐集、保留、儲存消費者生物辨識資訊行為。同時,也明文禁止業者將消費者生物辨識資訊以販賣、租賃、交易或是分享方式交換任何相關價值或利益。 二、提供受侵害之消費者訴訟權與法定賠償請求權。但是,就單純未符合揭露要求之業者,該法給予30天的補救期間,要求消費者應於起訴前30天通知業者改善,一經改善即不得再起訴。 三、闡明政府相關部門不適用本法。金融機構、業者與執法部門共享生物辨識資訊,以及單純以影像、圖像蒐集而未分析識別情形則豁免揭露規範。   綜上,紐約市於該法創設訴訟權、法定賠償數額及豁免事由,預料將會是紐約市企業隱私保護政策重要指標,而值得我們繼續關注其發展與影響。

運作技術成熟度(Technology Readiness Level)進行技術評估

運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言   為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。   科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。   技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。   由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明   技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。   TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用   技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段   這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險   研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。   需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位   TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。   TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論   TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。   TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。   由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。

TOP