美國聯邦第七巡迴上訴法院宣告電業以設置智慧電表手段蒐集用電戶即時用電資訊合法

  美國聯邦第七巡迴上訴法院於2018年08月16日宣告,美國伊利諾伊州杜佩奇縣內珀維爾市(Naperville)所經營之「獨占性」公用售電業,以裝設智慧電表手段蒐集用電戶即時(Real Time)用電資料,並保存長達三年之行為,並無違反美國憲法第四條修正案以及伊利諾州憲法第一條第六項所宣示之不得以不合理手段對於民眾居住隱私資料進行搜索之限制。

  美國聯邦第七巡迴上訴法院闡明,本案爭點有二:第一,內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料,並保存長達三年之行為,是否構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」?第二,如內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料係構成「對於民眾居住隱私資料之搜索」,則內珀維爾市(Naperville)所經營之獨占性公用售電業是否有更高之公益,可合理化此一對於「對於民眾居住隱私資料之搜索」之行為?

  美國聯邦第七巡迴上訴法院認定內珀維爾市電業以智慧電表手段蒐集民眾用電資訊,確實是構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」。但是由於珀維爾市電業蒐集這些用電資訊,是基於更高之公益目的,因此仍屬以合理手段對於民眾居住隱私資料進行搜索。因此判決本案珀維爾市電業勝訴。

  於第一爭點,美國聯邦第七巡迴上訴法院認定智慧電表之紀錄內容包含「電器負載特徵(load signature)」以及「用電戶電力消耗慣性」,對比Kyllo v. United States, 533 U.S. 27, 31-32(2001)乙案下警方以熱感應器方式偵測住宅整體熱能有無之行為,更高度細緻化、具有侵入性,且智慧電表之設置,於現今尚非普及(not in general public use),因此構成對於民眾居住隱私資料之搜索。又內珀維爾市(Naperville)所經營之獨占性公用售電業雖辯稱用電戶於裝設智慧電表時,皆已經同意電業蒐集其個人用電資訊,然美國聯邦第七巡迴上訴法院認定,內珀維爾市(Naperville)所經營之公用售電業具有高度獨占性,故用電戶裝設智慧電表之同意難謂有效,且用電戶同意用電,不代表用電戶即同意分享其用電資訊。

  惟於第二爭點,美國聯邦第七巡迴上訴法院認定,由於內珀維爾市(Naperville)所經營之獨占性公用售電業已經聲明不會將此類用電資訊分享予有關政府機關,且本案對於用電戶用電資訊之蒐集,其目的亦與刑事追訴無關,是以應以低密度審查標準看待本案即可,又本案內珀維爾市(Naperville)所經營之獨占性公用售電業裝設智慧電表之目的在於促使電網現代化,並且可使發電業供應更加穩定之電力,並且也可以透過時間電價(Time-Based Pricing)之方式促使用電戶節電,並且減少電網負載,同時也可以使發電業節省查表之人事成本,因此雖然內珀維爾市(Naperville)所經營之公用售電業透過裝設智慧電表之手段蒐集用電戶即時用電資訊係構成對於用電戶之民眾居住隱私資料之搜索,然由於其具有更高之公益性,因此仍可合理化此一對於「對於民眾居住隱私資料之搜索」之行為。

  綜上,本案美國聯邦第七巡迴上訴法院判定內珀維爾市(Naperville)所經營之獨占性公用售電業勝訴。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦第七巡迴上訴法院宣告電業以設置智慧電表手段蒐集用電戶即時用電資訊合法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8179&no=55&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
美國眾議院一致通過電子郵件保護法案

  美國眾議院於2016年4月27日一致同意通過支持電子郵件保護及雲端隱私法案(Email Privacy Act, EPA),本法案之後將會要求執法部門於搜查電子郵件或儲存於雲端設備的資料時,必須向法院取得搜查令,才能取得超過180天以上的資料。   本法案係針對1986年推出的《電子通信隱私法(Electronic Communication Privacy Act, ECPA》進行補強,因為目前科技的進步,早已遠超過ECPA是在網路興起前所得規制的範圍,在當初ECPA法案訂定之初,人民仍有定期刪除E-mail以保持硬碟空間的習慣,但相較於現在多數人都已使用雲端信箱的習慣下,如仍能讓警方等恣意調查任何人的信箱,往往可取得巨量的消息,因此本次的修正可預期將更能使相關規範符合時宜需求。   本次修正重點如下: 1.過往之ECPA規定要求聯邦機構在調查超過180天的電子郵件時只需要取得傳票即可,現在則是需要取得搜查令。 2.要求政府機構必須先取得法院的搜查令,才可以要求供應者揭露其保有之資訊。 3.要求執法部門應於取得資料的10天內向資料被揭露者提供相關證明,如涉及政府單位者則縮短至3天。   雖然EPA在眾議院內獲得美國兩黨的一致通過,但仍須經參議院下一波的投票表決,才能決定本案是否得順利通過。

挪威推動修法舒緩泛歐盟區域內國際漫遊費率問題

  挪威交通部(Ministry of Transportation)甫於本月推出電子通訊法(Electronic Communication Act)修法草案,其主要針對1-5、2-12、4-14條之規定進行修正,期望透過確認主管機關對費率和爭端處理程序等事項之管轄權和財務補貼,解決歐盟(European Union;EU)和歐洲經濟區(European Economic Area;EEA)內,長期爭議不決的國際漫遊費率問題。   強調區域整合的泛歐盟經濟體(含27個EU會員國和挪威、列支敦士登、冰島3個EEA會員國),雖在貨物、人口、服務、貨幣之自由流通等,各項單一市場上的努力上相當成功,但其電信漫遊之跨國界服務,卻經常受到各界批評,主要問題即源自於居高不下的跨國漫遊費率。因歐洲地理和人口分佈稠密度甚高,居民極容易使用跨國電信服務,但卻需負擔動輒數倍的國際漫遊費用問題。近年來歐盟有意對此尋求解決之道,而挪威此次修法即為初步重要嘗試之一。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

法商Parrot商標侵權及商業秘密洩漏案對外商於中國大陸規範人員管理的啟發

TOP