美國FDA更新軟體預驗證計畫,以明確化數位健康科技的軟體器材審查流程

  美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。

  在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。

  在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。

本文為「經濟部產業技術司科技專案成果」

相關附件
※ 美國FDA更新軟體預驗證計畫,以明確化數位健康科技的軟體器材審查流程, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8181&no=55&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
歐盟執委會規劃制訂新世代智慧電網規範,及研擬共通性評估要項工具

  歐盟執委會(European Commission)於去(2011)年10月公布一份「建立共通性智慧讀表功能要項及影響因素(Set of Common Functional Requirements of the Smart Meter)」調查報告,對於各會員國發出問券,調查對於建設智慧讀表(智慧電網SmartGrid系統首要基礎)之經濟評估要項,藉此瞭解各國於推動建立,所考量之優先因素及差異性,並藉此彙整出「成本效益評估項目(Cost Benefit Assessments , CBAs)」,建立歐盟層級之共通性功能要項,以利後續其他會員國援用導入之政策工具。   以及,歐盟執委會所屬聯合研究中心(Joint Research Centre , JRC),於去(2011)年7月亦公布一份「歐盟智慧電網關鍵挑戰及發展趨勢(Smart Grids: New Study Highlights Key Challenges and Trends in the EU)」研究報告,指出歐盟各會員國現今已投入219個智慧電網計畫,總經費達5.5兆歐元以上,並設立展示(Showcases)網站,供外界瞭解推動進度;此研究報告並指出,要健全智慧電網發展,除了大規模投入經費資源建設外,更應重視各會員國對於原既有能源管制規範之體檢審視;該報告呼籲各會員國應積極建立新世代智慧電網規範,因為於現有管制規範下,常導向各國推動實務,多僅強調可降低系統運作支出成本,而不是直接朝向升級為智慧性整合體系而發展,於現有監管模式(Current Regulatory Models)下,縱使眾多投資於智慧電網,亦無法出現突破性發展。該報告並倡議,新世代管理規範,至少應建立服務平台運作原則及遵守規範,並導引效益之公平分享。   此外,歐盟執委會於去(2011)年4月間,關於智慧電網發展重要法制政策之關鍵議題,亦曾發布「智慧電網創新發展(Smart Grids: From Innovation to Deployment)」政策文件,其中明列發展智慧電網,首要應重視資料隱私及安全性議題(Addressing data privacy and security issues),亦必須建立共通性標準(Developing common European Smart Grids standards),及提供優惠政策措施,並且應確保消費者資料接取(Access)權利,保證維持公開競爭市場並鼓勵增進消費者利益之各項發展。

美國專利商標局就研發成果商業化議題徵集公眾意見

美國專利商標局(United States Patent and Trademark Office, USPTO)於2024年3月15日至5月14日間,就促進研發成果商業化之方法徵集公眾意見;本次議題包括: (1)在研發成果商業化的過程(尤其是利用智慧財產制度以進行技術移轉時),所遇到的最大挑戰及機會各為何?以及希望USPTO提供何種協助? (2)在進行綠色和氣候技術、關鍵和新興技術移轉時,有無遇到任何智慧財產相關的挑戰及機會,以及希望USPTO提供何種協助? (3)請列出可促進研發成果運用、綠色和氣候技術及關鍵和新興技術移轉的政策與作法; (4)請列出各利害關係人在界定潛在被授權人及進行技術移轉時,所面臨的智慧財產相關挑戰,以及現行制度有無需要改變,以減少這些挑戰; (5)請就USPTO於新冠肺炎疫情期間所推動,一用於媒合新冠肺炎治療技術供需雙方之「Patent 4合作夥伴平台計畫」(The Patents 4 Partnerships platform)進行評論,包含促成合作關係之作法; (6)請就USPTO於2022年7月參與之「世界智慧財產權組織(WIPO)綠色計畫」(WIPO GREEN)進行評論,包含USPTO可如何促進計畫的成功與擴大影響力; (7)請列出USPTO可協助特定人士、技術、產業、公司,降低研發成果運用過程中面臨挑戰之可能作法; (8)請列出USPTO可協助「代表性不足群體」(underrepresented group)、個體發明者、中小企業提升研發成果運用認知,及克服現行挑戰的作法; (9)請列出USPTO可協助少數群體服務機構(Minority Serving Institutions, MSIs)、傳統黑人大學(Historically Black Colleges and Universities, HUCUs)擴大其研發成果商業化的機會; (10)USPTO在促進研發成果商業化上,可以發揮的其他作用; (11)其他國家可更促進研發成果商業化的作法。

比利時法院要求Google移除新聞轉載連結

  儘管類似 Google News 提供新聞連結的作法在網路上屢見不鮮, Google 也認為其行為完全合法,但 比利時布魯塞爾法院於 9 月 5 日 作出的判決,仍要求 Google 在沒有獲得對方允許或支付相應費用的情況下,應 停止從法語報紙上節錄新聞片段,否則將會面臨每天一百萬歐元的罰款。 Google 雖因此暫時移除了相關新聞的轉載連結,卻打算對此判決提起上訴。   該案法官指出, Google 在這些報章媒體網站更新相關新聞後,才在 Google 網站上提供轉載內容,法院認為這不但侵害了作者的著作權,且違反比利時有關資料庫的法律。除了移除轉載連結外,法院也要求 Google 必須在 Google 比利時網站上公布該判決內容,否則另須繳交每日五十萬歐元的罰款。   這起控告 Google 的訴訟是由比利時出版集團 Copiepresse 所提起的,該集團代表比利時境內多家法語及德語報社,亦為一管理比利時法語及德語媒體著作權的專門機構。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP