人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

隸屬計畫成果
AI領航推動計畫(1/1)_AI 新創領航
 

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日

壹、事件摘要

  美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。

  本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。

貳、重點說明

  2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。

  根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:

  1. 行政管理目的[2];或
  2. 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或
  3. 目的在於進行電子化的個人健康紀錄[4];或
  4. 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或
  5. 同時符合以下四點之軟體:

    (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]

    (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]

    (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]

    (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]

  雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。

  CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]

  1. 該軟體功能之目的或用途;及
  2. 預期使用者(例如超音波技師、心血管外科醫師);及
  3. 用於產生臨床建議的原始資料(例如患者的年齡和性別);及
  4. 臨床建議產生背後之邏輯或支持證據

  後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。

  由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]

  另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]

參、事件評析

  《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。

  然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:

一、「理解」演算法?

  根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]

二、如何要求演算法透明度?

  指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]

三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?

  FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。

肆、結語

  隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。

  然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。

[1] 21 U.S. Code §360j

[2] FD&C Act Sec. 520(o)(1)(A)

[3] FD&C Act Sec. 520(o)(1)(B)

[4] FD&C Act Sec. 520(o)(1)(C)

[5] FD&C Act Sec. 520(o)(1)(D)

[6] FD&C Act Sec. 520(o)(1)(E)

[7] FD&C Act Sec. 520(o)(1)(E)(i)

[8] FD&C Act Sec. 520(o)(1)(E)(ii)

[9] FD&C Act Sec. 520(o)(1)(E)(iii)

[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)

[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)

[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8

[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[15] 21th Century Cures Act, Sec. 3060(b)

[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)

[17] Id.

[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)

[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

相關連結
相關附件
你可能會想參加
※ 人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8185&no=0&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
德國機器人和人工智慧研究

  人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。   德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。   解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。

歐盟部長理事會通過開放GSM頻段供3G寬頻技術使用

  歐盟部長理事會(Council of Ministers)已跟隨歐洲議會腳步,通過對「GSM 指令」(Global System for Mobile Communications Directive)進行修改的提案,准許電信營運商在900 MHz頻段上提供UMTS服務(3G通訊技術之一,可向下相容GSM與GPRS),例如WCDMA通訊架構可於900 MHz上運用。這項決議仍須經過歐盟各會員國國會和監督機構認可,預計2009年10月開始實施。   原先指令在1987年所提出,將900 MHz和1800 MHz頻段劃歸GSM手機專用,此作法有效促進GSM產業的蓬勃發展。修改該指令的提案,則是允許讓900 MHz頻段在繼續供GSM服務使用的同時,也開放給行動上網等更高速的泛歐洲通訊服務。預估將能大幅降低電信營運商網路建制成本,可減少大約16億歐元的支出。   據歐盟電信委員會Viviane Reding委員表示,GSM Directive的修訂,將為行動通訊業者解除限制,並因此能在GSM頻段上建置更先進的技術,以提供高速行動寬頻服務;她預期這將有效促進歐洲的無線經濟(wireless economy),並催生「數位歐洲」(Digital Europe)的誕生。相關發展值得台灣電信通訊產業注意。

網路搜尋引擎龍頭Google 控告Microsoft剽竊搜尋結果

  網路搜尋引擎龍頭Google質疑Microsoft研發的“Bing”搜尋引擎有剽竊Google搜尋結果的狀況,對此Google已提出訴訟。Google表示,為了要調查是否有搜尋結果被剽竊的情形,故意在搜尋引擎中創造近100個毫無意義的搜尋關鍵字,例如“Hiybbprqag”、“Mbzrxpgiys”和“Indoswiftjobinproduction”等,同時對應該關鍵字插入虛假的搜尋結果。在幾個禮拜之後,Google發現競爭對手Microsoft 的Bing搜尋引擎也出現相同的搜尋結果,因此認為Bing有剽竊之疑。Google表示:「Google的搜尋結果是經過多年辛苦努力的成果,這件事情對我們來說像是一場馬拉松賽跑中有人在背後偷襲你,然後突然跳到終點站前迎接勝利,是一種欺騙的行為。」   Microsoft否認剽竊搜尋結果,認為這是Microsoft用來提高搜尋品質結果的方法之一,Bing實際上使用不同的符號和方法來對於不同的搜尋結果加以分級,用來辨別不同的搜尋結果。同時針對搜尋結果提供多數關連的答案,藉此增加消費者對於Bing搜尋引擎的良好經驗,Google使用間諜手法(Spy-novelesque stunt)對競爭對手進行調查,此舉已抹黑Bing,蒙上不好的評價。   Google提出抗辯認為Bing的行為構成簡單而顯然的詐欺,造成不同的搜尋引擎產生同樣的搜尋結果。況且搜尋引擎的功能,若可以出現與Google搜尋下相同的結果,並無法保證能創造出更好的搜尋品質,Microsoft的說法無法獲得肯認,後續延燒的訴訟爭議,有待日後進一步觀察。

加拿大運輸部發布自駕系統測試指引2.0,為建立全國一致的實驗準則

  加拿大運輸部(Transport Canada)於2021年8月6日發布「自駕系統測試指引2.0」(Guidelines for Testing Automated Driving Systems in Canada Version 2.0),建立全國一致的最佳實踐準則,以指導配有自動駕駛系統(Automated driving systems, ADS)之車輛能安全地進行實驗。根據從國內外測試活動中取得的經驗及教訓,對安全措施進行更新,內容包括: 一、實驗前的安全考量:探討在開始實驗之前應考量的安全注意事項,包括(1)評估實驗車輛安全性、(2)選擇適當的實驗路線、(3)制定安全管理計畫、(4)安全駕駛員與培訓、(5)民眾溝通及提高意識、(6)確保當地執法單位及緊急應變人員瞭解實驗活動。 二、實驗中的安全管理:討論在實驗過程中應重新檢視的安全考量,包括(1)使用分級方法進行測試、(2)調整安全管理策略、(3)制定事件和緊急應變計畫與步驟、(4)安全駕駛員的角色及職責、(5)遠端駕駛員和其他遠端支援活動的安全考量、(6)在沒有安全駕駛員的情況下進行實驗、(7)與其他道路使用者的安全互動、(8)與乘客的實驗、(9)定期報告及資訊共享。 三、實驗後應注意之事項:在結束其測試活動後應考量的因素,包括報告實驗結果、測試車輛及其部件的出口或處置。如果測試車輛是臨時進口的,則在測試完成後可能需要將其銷毀或捐贈。   該測試指引僅適用於臨時實驗,而非永久的市場部署,加拿大運輸部將繼續更新該測試指引及其他文件和工具,以支持加拿大道路使用者的安全。

TOP