人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

隸屬計畫成果
AI領航推動計畫(1/1)_AI 新創領航
 

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日

壹、事件摘要

  美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。

  本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。

貳、重點說明

  2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。

  根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:

  1. 行政管理目的[2];或
  2. 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或
  3. 目的在於進行電子化的個人健康紀錄[4];或
  4. 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或
  5. 同時符合以下四點之軟體:

    (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]

    (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]

    (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]

    (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]

  雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。

  CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]

  1. 該軟體功能之目的或用途;及
  2. 預期使用者(例如超音波技師、心血管外科醫師);及
  3. 用於產生臨床建議的原始資料(例如患者的年齡和性別);及
  4. 臨床建議產生背後之邏輯或支持證據

  後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。

  由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]

  另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]

參、事件評析

  《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。

  然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:

一、「理解」演算法?

  根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]

二、如何要求演算法透明度?

  指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]

三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?

  FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。

肆、結語

  隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。

  然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。

[1] 21 U.S. Code §360j

[2] FD&C Act Sec. 520(o)(1)(A)

[3] FD&C Act Sec. 520(o)(1)(B)

[4] FD&C Act Sec. 520(o)(1)(C)

[5] FD&C Act Sec. 520(o)(1)(D)

[6] FD&C Act Sec. 520(o)(1)(E)

[7] FD&C Act Sec. 520(o)(1)(E)(i)

[8] FD&C Act Sec. 520(o)(1)(E)(ii)

[9] FD&C Act Sec. 520(o)(1)(E)(iii)

[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)

[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)

[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8

[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[15] 21th Century Cures Act, Sec. 3060(b)

[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)

[17] Id.

[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)

[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

相關連結
相關附件
※ 人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8185&no=64&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
美國管理不實施專利主體立法進程與趨勢

美國管理不實施專利主體立法進程與趨勢 科技法律研究所 法律研究員 劉憶成 2015年07月30日 壹、不實施專利主體概述   「不實施專利主體(non-practicing entity, 以下簡稱NPE)」乃是一個中性的名詞,NPE一方面可促進專利技術交易市場的活絡,但另一方面也有NPE不以活絡專利技術交易市場為目的,而是透過以低價購買專利成為專利權人,並據以行使《專利法》上之權利,投機性地靜待商品製造者投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張,對於後者有人將其稱之為「Patent Troll」(中文有譯為「專利巨人」、「專利蟑螂」、「專利流氓」、「專利地痞」或「專利恐怖份子」等等,以下統譯為「專利地痞」)。   專利地痞藉由有問題的專利申請範圍恐嚇企業並勒索和解金的案例激增,對美國造成數十億美元的經濟耗損並且破壞了美國的創新,其橫行的技術領域以智慧型手機及其他消費性電子產品為最。根據加州舊金山的專利顧問公司RPX所作的研究,至2014年,美國專利侵權訴訟中有63%的訴訟是由專利地痞所提起,而受害公司花費在法律費用、和解或判決的費用約122億美元。因此如何降低專利訴訟的成本、降低無效專利的數量及提升專利權的授予品質都成為美國的重要政策目標。 貳、美國政府的對應措施   為了解決專利地痞所帶來的問題,美國早在2011年由國會通過《萊希-史密斯美國發明法(Leahy-Smith America Invents Act of 2011),以下簡稱AIA》,該法並於2012年生效。其目的在於透過改善美國專利制度,包括為發明人提供專利處理程序的快速通道、採取重要步驟來降低專利案件的積壓及提升美國人在國外保護其智慧財產權的能力等等。   不過,專利地痞所帶來的挑戰依舊,特別是專利地痞提出侵權訴訟之成本與被控侵權公司為了防禦所付出的成本之間不具對稱性,這使得專利地痞有機會以和解取得利益。因此,2013年美國政府曾向其國會提出立法七項建議,也祭出五項行政措施,使專利制度更具有透明性,並為發明者創造一個公平競爭的環境。 參、美國國會積極立法   對此,美國開始了多項進一步管理專利地痞的立法進程。以下將就2015年美國國會針對專利地痞所提出之法案進行介紹。   (一)新版創新法案(the Innovation Act)   本法案2015年2月5日送入美國眾議院審議,其法案接續2011年的「美國發明法案」(the American Invents Act,AIA),企圖進一步解決專利地痞濫用訴訟之難題,其中重要條款包括:由敗訴方負擔律師費、提高專利訴訟的成案基準(pleading standard)、專利權人揭示制度、客戶中止訴訟程序等等。   (二)警告函透明法案(Demand Letter Transparency Act of 2015)   美國眾院於2015年4月20日提出《警告函透明法案》,該法案首先要求美國專利與商標局(USPTO)建立一個公開可查詢的警告函資料庫,然後要求大量寄發侵害警告函的行為人必須透過這個資料庫對USPTO揭露其行動,同時侵害警告函的內容也必須記載這些資訊,使收信人能夠公平得知。   (三)保護美國人才與企業法案   美國參議院於2015年4月底針對抗衡美國patent troll提出法案,該法案名為《the Protecting American Talent and Entrepreneurship (PATENT) Act》。希望能制止美國近年來濫用美國專利制度,所造成許多不必要之專利訴訟案件等情形。美國眾議院於2015年5月底又針對PATENT Act法案作出修正,希望在打擊專利地痞的同時,又不至於而造成專利權人濫用AIA的保護。 肆、結論   為了解決專利地痞的問題,美國政府分別從立法及行政措施著手,依據美國歐巴馬總統的建議,不論是美國政府或是美國國會,刻正積極雙管齊下透過各項行政手段,例如修改專利相關規則,或者透過國會立法方式,對專利地痞進行規制。其實,專利地痞不僅橫行於美國,其亦在許多國家從事相關活動,故美國相關行政措施與立法,勢必成為各國在解決專利地痞問題時的重要參考依據,因此美國各項法案的後續發展,都值得吾人繼續關注。

英國交通部推出MaaS實務準則,達成兼顧永續與包容的次世代MaaS服務

英國交通部(Department for Transportation, DfT)於2023年8月30日提出「交通行動服務(MaaS)實務準則(Mobility as a Service: code of practice)」,內容針對MaaS之提供商,提出產品及服務建議。MaaS實務準則涵蓋包含以下五個面向,以提供MaaS廠商具體明確的產品設計及營運建議: 1. 交通包容性與近用性(accessibility),例如應盡力避免產品之AI演算法產生偏見、確保AI學習資料無偏差;產品介面應提供視覺、聽覺輔助功能;針對身障民眾應提供適當之交通路線建議,以及應提供偏鄉、無網路區域非線上(offline)服務管道; 2. 低碳運輸之推廣,如納入更多步行、單車等環保交通選項; 3. 友善之多元支付方式,如現金、數位支付、定期套票,並整合火車、地鐵、客運、公車之支付系統; 4. 資料分享與資料安全並重,保障使用者隱私,如採用公認之資料安全標準以及與同業簽訂資料共享契約; 5. 重視消費者權益保障,鼓勵平台間公平競爭,如釐清各參與者間之責任,避免消費者投訴無門,以及提供線上及非線上聯絡窗口,及時處理消費者需求等。

美國法院判LV勝訴,並可獲得3240萬美元的損害賠償

  法國知名品牌公司路易威登(Louis Vuitton,下稱LV) 與網際網路服務提供者(Internet Service Providers,以下簡稱ISP)之商標及著作權訴訟案,在2009年8月31日獲得加州聯邦地方法院陪審團的裁定,判定LV贏得商標及著作權侵害訴訟,並可獲得3240萬美元的損害賠償。LV在找到使用相同網址並且明知販賣LV假貨的網站後,於2007年提出著作權及商標侵害訴訟。     Steven Chen管理的Akanoc Solutions公司、Managed Solutions Group公司提供侵害LV商標及著作權網站網際網路的服務,加州聯邦地方法院陪審團認定Akanoc、Managed Solutions和Steven Chen須負輔助商標及著作權侵權之責任,並且要負損害賠償3240萬。同時,LV聲明希望法院對侵權的網站提出永久禁制令,禁止網站上兜售LV假貨。     陪審團的這項裁定引起網路上的討論,一般輿論都認為此項裁定賦予ISP業者太重的責任,然而陪審團決定的關鍵要點在於他們相信被告(Web Host)明知或可得而知侵權行為正在發生。     每日財經(Daily Finance)專欄作者Sam Gustin觀察指出:對於美國的ISP業者來說,此項規定傳達出一個清楚且略微可怕的訊息,當ISP業者提供服務的網站,有販售假貨或侵權物品,即便ISP業者有試著去阻止這項非法的活動,但卻失敗了,仍須負責。     LV智慧財產主管Nathalie Moullé-Berteaux認為陪審團所做出的這項裁定。對減少網站非法販賣偽造品或假貨跨出重要的一步,並且強制建立網際網路的法律規範

世界智慧財產權組織發布「2019年全球創新指數報告」(GII)

  2019年7月24日,世界智慧財產權組織(World Intellectual Property Organization, WIPO)、美國康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)共同發布「2019年全球創新指數報告」(Global Innovation Index 2019, GII)。GII報告每年度發行一份,希望幫助全球決策者更有效地制定政策及促進創新。本年度的報告主題是「創造健康生活─醫療創新之未來展望」,內容展望創新醫療,包括:導入人工智慧(artificial intelligence, AI)、基因體學(genomics)和健康醫療相關的手機應用程式,將會改變醫療照護。醫療創新無論是在診斷或預後,由於大數據、物聯網(Internet of Things, IoT)和人工智慧等新興科技的興起而改變。伴隨而來的是倫理、社會經濟等多方面、史無前例且迫切的挑戰。報告中提及幾項重要發現: 儘管經濟衰退,然而全球創新遍地成長,不可忽略保護主義對於全球創新的潛在風險。 創新版圖開始位移,中收入的經濟體開始嶄露頭角,值得一提的是以色列躋身第十名,而南韓也在前二十名的名單。 創新的投入和成果(innovation inputs and outputs)仍集中於特定少數經濟體和地區。 特定經濟體透過創新獲得的投資報酬率,大幅高過其他經濟體。 從「重量不重質」,蛻變為「重質不重量」,仍為改革的重要方針。 多數科學與科技的創新集中在美國、中國和德國。 需要更多的投資並將科技普及化,方能透過醫療創新打造健康生活。   GII依據80項指標評比129個經濟體,指出,全球創新指數最高的國家排名前五名為:瑞士、瑞典、美國、荷蘭、英國,均為高所得國家。中高所得國家創新指數前三名為:中國、馬來西亞、保加利亞;中低所得國家前三名為:越南、烏克蘭、喬治亞;低所得國家前三名則是:盧安達、塞內加爾、坦尚尼亞。至於區域性的創性領袖國是印度(中亞與南亞)、南非(撒哈拉以南非洲)、智利(拉丁美洲和加勒比海地區)、以色列(北非與西亞)、新加坡(東南亞、東亞與大洋洲)。最頂尖的自然與科技聚落所在國家為:美國、中國、德國;並特別指出巴西、印度、伊朗、俄羅斯、土耳其表現亮眼。最頂尖五大聚落是東京-橫濱(日本)、深圳-香港(中國大陸)、首爾(南韓)、北京(中國大陸)、聖荷西-洛杉磯(美國)。

TOP