人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

隸屬計畫成果
AI領航推動計畫(1/1)_AI 新創領航
 

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日

壹、事件摘要

  美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。

  本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。

貳、重點說明

  2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。

  根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:

  1. 行政管理目的[2];或
  2. 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或
  3. 目的在於進行電子化的個人健康紀錄[4];或
  4. 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或
  5. 同時符合以下四點之軟體:

    (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]

    (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]

    (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]

    (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]

  雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。

  CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]

  1. 該軟體功能之目的或用途;及
  2. 預期使用者(例如超音波技師、心血管外科醫師);及
  3. 用於產生臨床建議的原始資料(例如患者的年齡和性別);及
  4. 臨床建議產生背後之邏輯或支持證據

  後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。

  由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]

  另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]

參、事件評析

  《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。

  然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:

一、「理解」演算法?

  根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]

二、如何要求演算法透明度?

  指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]

三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?

  FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。

肆、結語

  隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。

  然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。

[1] 21 U.S. Code §360j

[2] FD&C Act Sec. 520(o)(1)(A)

[3] FD&C Act Sec. 520(o)(1)(B)

[4] FD&C Act Sec. 520(o)(1)(C)

[5] FD&C Act Sec. 520(o)(1)(D)

[6] FD&C Act Sec. 520(o)(1)(E)

[7] FD&C Act Sec. 520(o)(1)(E)(i)

[8] FD&C Act Sec. 520(o)(1)(E)(ii)

[9] FD&C Act Sec. 520(o)(1)(E)(iii)

[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)

[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)

[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8

[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[15] 21th Century Cures Act, Sec. 3060(b)

[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)

[17] Id.

[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)

[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

相關連結
相關附件
※ 人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8185&no=66&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
紐西蘭隱私專員辦公室「揭露涉及隱私案件之機關名稱」政策生效

  紐西蘭隱私專員辦公室日前針對「是否及如何揭露涉及隱私案件之機關(公務機關或非公務機關)名稱」發布政策;該政策自2014年12月1日起生效。   根據紐西蘭1993年隱私法的規定,隱私專員可決定公開有助於貫徹隱私法立法意旨的資訊等;只要符合此規定,原則上隱私專員也可揭露涉及所調查隱私案件之機關名稱。據此,紐西蘭隱私專員辦公室即於日前針對是否及如何揭露上述機關名稱制定並公布政策。   須說明的是,即使機關確有違法情事,其名稱亦不必然會被揭露,如果有法律上原因或有理由認定不適揭露時,則隱私專員將不會簽署授權揭露之文件。   根據該政策,如機關違反隱私法之行為將導致難以回復之損害、其行為將導致嚴重之後果、該機關被認定為故意違反法律、揭露機關名稱有利於公益,或存在不揭露機關名稱將導致同領域、產業之其他機關受到不合理之牽連或不利益等情形時,則違反機關之名稱較可能被揭露。反之,如果僅屬單一事件、機關之行為較不至於致不利影響,或存在揭露機關名稱反不利於公益等情形時,則機關名稱則較可能不會被揭露。

中國大陸修定「網絡交易管理辦法」,課與第三方交易平台多項經營責任

  中國大陸國家工商行政管理總局為加強網路交易消費者保護,在2014年03月15日起實施「網絡交易管理辦法」,就企業經營者責任新設多項規定。特別是針對第三方交易平台業者,辦法要求其建立交易規則、消費資訊保存、不良訊息處理、消費糾紛調解管道等管理制度,以確保平台服務品質。同时要求平台業者建立審查制度,對申請進入平台從事經營活動之賣家,進行身分審查與建檔,透過以網管網,達成有效率的網路身分管理。   另外,為確保網路交易市場秩序、公平競爭,本辦法亦例示多項不公平競爭行為態樣,包括任意調整信用評價、傷害他人商譽等影響交易秩序之欺罔行為,皆受到明文禁止。甚至在商標侵權情況中,平台在接收到侵權通知時,必須積極採取必要措施,否則就因此損害擴大部分,將與侵權行為人共同承擔連帶責任。   考量在兩岸近期簽署之「海峽兩岸服務貿易協議」中,陸方已承諾對台開放「在線數據處理與交易處理業務」之電子商務網站經營,待將來協議完成相關程序生效後,台灣電子商務業者在進入大陸市場經營交易平台時,勢必受到本辦法規範,實應留意相關要求以避免觸法。

當前日本車聯網面對之相關課題及策略目標

  日本總務省下設之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年4月19日第4次會議中提出當前日本車聯網面對之相關課題及策略目標。至目前為止日本智慧型運輸系統(Intelligent Transportation System)各自已發展出道路交通資訊通信系統(Vehicle Information and Communication System,簡稱VICS)、電子收費系統(Electronic Toll Collection System,簡稱ETC)、雷達防追撞(レーダー)等不同通訊技術,自動駕駛則發展至初期階段。日本當前發展中面臨其企業國際競爭力確保與強化、持續友善環境之可能性、高齡化及勞動生產力人口減少等問題。希望透過國家開發之系統及國際服務方式,利用交通資訊通信系統實現最佳的交通狀態,在人口稀少之地區利用無人駕駛系統,使駕駛不足之問題得以解決,對當地之購物及交通上可以加以協助。車聯網研究會設定之4大目標為: 零交通事故之社會 確保人之行動自由 便利、快速、安心之生活環境 生活方式的變化   透過利用車與車間通信等技術,降低事故之發生,普及車聯網等資通訊系統,車中行動模式之變革,並透過異業結合創造新的服務模式,達成安全、安心、便利之智慧聯網生活4大目標。

美國藥品CGMP規範關於製劑部分修正之觀察

  美國食品及藥物管理局(Food and Drug Administration,FDA)於2008年9月8日針對現行優良藥品製造作業規範(Current Good Manufacturing Practice In Manufacturing, Processing, Packing or Holding of Drugs,藥品CGMP規範)中關於製劑的部分,公布了最新修正規則,並在同年的12月8日正式實施,希冀藉此能與其它FDA規範(例如:品質系統規範﹙the Quality System Regulation, 21 CFR part 820﹚)和國際性的CGMP標準(例如:歐盟CGMP規範﹙the CGMPs of the European Union﹚)相調和。   本次修正係採漸進式,而非一次性的方式為之,主要針對無菌處理(aseptic processing)、石棉過濾裝置(asbestos filters)之使用、以及第二者驗證(verification by a second individual)等做修正。   首先,針對無菌處理部分,要求設備及器具必須清潔、保養,且視藥品的本質不同,予以消毒和(或)殺菌,以避免故障或污染。對於可能遭微生物污染致影響其預定用途之原料、藥品容器或封蓋,要求應於使用前經過微生物檢驗。此外,尚新增生物負荷量測試(bioburden testing)於管制程序的列表中,以保障每批藥品之均一及完整性。   其次,關於石棉過濾裝置之使用方面,回應一直以來所存在著將使用於生產液態注射劑產品(liquid injectable products)之過濾裝置規範更現代化的需求,本次修正明訂,於今後禁止使用石棉過濾裝置,同時,亦將石棉過濾裝置於非纖維釋出性過濾裝置的定義之中刪除。   最後,有關第二者驗證部分,因應生產過程逐步自動化的潮流,本次修正於原有規範下增設規定指出,如以自動化設備執行秤重、測量、分裝、產量計算、設備清潔與使用記錄、生產與管控紀錄等之工作,且符合相關條文要求,並有一人檢查該設備是否如預設正常運作,則視為合乎原有規範下須有一人操作另一人檢查之規定。亦即修正後之執行,只需一人加以確認該自動化設備是否適當運作即為已足,毋須就過程中的每一步驟加以檢視,避免多餘人力之浪費。   總括來說,本次修正確保法規確實涵蓋現行業界的操作實務,同時並確立FDA將藥品CGMP規範與以現代化,並與國際標準調和之目標,為以漸進方式修訂藥品CGMP規範跨出重要的一步。

TOP