IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。

一、問責制度(Accountability)
  由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。

二、價值協同(Value Alignment)
  人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。

三、可理解性(Explainability)
  人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。

  該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

相關連結
相關附件
※ IBM提出「人工智慧日常倫理」手冊作為研發人員指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8195&no=64&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
美國國防部「人工智慧國防運用倫理準則」

  美國國防部(Department of Defense)於2020年2月採納由美國國防創新委員會(Defense Innovation Board, DIB)所提出之「人工智慧國防運用倫理準則(AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense)」,以衡平倫理與人工智慧於國防帶來之增益。   美國國防創新委員會為美國聯邦政府下之獨立委員會,設置目的在於依美國新創科技,提供意見予美國國防部,與美國國防部並無隸屬關係。有鑑於人工智慧之運用範疇日益增廣,美國國防創新委員會遂提出旨揭「人工智慧國防運用倫理準則」,以因應人工智慧於國防之應用所產生之問題。   倫理準則適用於「戰爭或非戰爭用途之人工智慧之設計以及應用」,對於「人工智慧」之定義,倫理準認為人工智慧並無精確之範疇,只要「對於資訊有所處理並旨在達到所賦予任務之資訊系統」,皆為本準則下之人工智慧。倫理準則指出,「人工智慧」與美國國防部3000.09指令下之「自動化武器系統(Autonomous Weapon System)」之定義不同,但有可能重疊,而所謂「自動化武器系統」為「一經人類選擇啟動,即可在無人類監督之情形下,自動針對目標進行鎖定或進行攻擊之自動化武器系統」。   美國國防創新委員會表示,該準則旨在切合美國既有憲法、法律、國際公約之傳統標準下,融入現代化對於人工智慧之要求,如國際公約中之戰爭法(Law of War)即為本準則之傳統標準之一,舉例而言,如人工智慧被裝置於武器中,其設計及應用應符合最小傷亡原則、避免傷及無辜原則等。   除此之外,準則亦包含以下現代化對於人工智慧之要求:(1)人類對於人工智慧系統之設計、應用以及使用應善盡判斷以及注意義務,且人類應該對於人工智慧系統因瑕疵所帶來之傷害負擔最終責任;(2)對於目標之選擇或分類,應維持公平性,且不得有歧視性;(3)對於人工智慧之設計、應用以及使用,應有明確之工程標準以及資料保存程序,此一工程標準以及資料保存程序應為一般具有專業知識之工程人員可據以理解、分析、追蹤問題所在並加以改善;(4)「戰爭或非戰爭用途之人工智慧」應有明確之應用領域,且完善之檢測、維修,應適用於該人工智慧之全部生命週期。

英國資訊委員辦公室(ICO)針對COVID-19接觸史追蹤應用程式框架,發布意見報告

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年4月17日,依據英國資料保護法(Data Protection Act 2018)第115條第3項第b款之授權,針對2020年4月10日Apple和Google因應COVID-19疫情發表之「接觸史追蹤應用程式框架」(Contacting Tracing Framework, CTF),發布意見報告。報告認為,由於CTF具備以下三大特性:(1)不會在裝置間交換個人資料,如帳戶資訊或使用者名稱;(2)配對過程僅在裝置本身進行,並不會有如應用程式伺服器之第三方介入;(3)不需要地理位置資訊就能順利運作,因此符合英國資料保護法第57條有關「透過設計並作為預設以保護個人資料」(Data protection by design and default)之規定。   縱然CTF符合英國資料保護法之規定,英國資訊委員辦公室仍於報告中指出:「未來軟體開發商若於接觸史追蹤應用程式中使用CTF技術,該應用程式於處理使用者之個人資料時,仍應隨時符合英國資料保護法關於透過設計並作為預設以保護個人資料之規定。」COVID-19疫情席捲全球,如何於「掌握感染者接觸史以預防疫情擴散」與「保障個人資料及隱私」間取得平衡,實為各國政府需考量之重要議題。我國人工智慧實驗室於2020年4月開發之「社交距離App」,便是使用類似Apple和Google之CTF技術。此份英國資訊委員辦公室意見報告,等於針對社交距離App是否侵害隱私權益,提供相當解答與指引。

逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」

在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

何謂「創新採購」?

  歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序: 1.簡化及採用彈性的政府採購程序 2.擴大適用電子招標; 3.改善中小企業參與招標程序; 4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。   因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。   其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。   前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。

TOP