美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。
數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。
本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。
日本總務省之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年8月4日公布研究成果。車聯網研究會指出未來車聯網將面對①遠距離操作、網絡攻擊之威脅;②資料(Data)真實性之威脅;③隱私權之保護等三大威脅。針對遠距離操作、網絡攻擊之威脅,在汽車端及網路端皆應提出防止威脅之策略;在確保資料真實性方面,需建立機制,以防止資料中途被篡改;未來在車輛雲端資料之應用,應以隱私權保護為前提,始促進車輛資料之利用及活用,以保護相關人之隱私權。 車聯網研究會在促進實現車聯網社會策略中,希望透過①聯網計畫(Connected Network プロジェクト)、②互聯資料計畫(Connected Data プロジェクト)、③互聯平台計畫(Connected Platform プロジェクト)等三個計畫,共同建立推廣實證平台,以確立及實證必要之技術,建立資料利用及活用之模式及環境,架構開放性合作模式,並確保隱私及安全性。進而建設高度可靠性之無線通信網路、透過創新產業和商業模式促進資料之利用、創新環境的發展,達到解決日本之社會問題、實踐便利與舒適之生活、國家競爭力之強化與確保等車聯網社會三大目標,最終落實安全、安心、舒適的車聯網社會。
FCC執行局建議駁回有線電視業者對電信業者之申訴由於美國之主要電信業者與有線電視業者紛紛推出語音、數據與影音三合一服務(triple play),彼此之間的競爭也日益激烈。為搶奪市場,電信業者與有線電視業者分別向美國聯邦通訊傳播委員會(FCC)提出申訴,指競爭對手以不公平方式阻擋客戶轉換服務提供業者。如2008年2月間,Comcast、Time Warner 等有線電視業者向FCC申訴,Verizon 及其他既有電信業者在消費者申請電信號碼可攜服務過程中,以違反通訊法(the Communications Act of 1934)規定方式,利用消費者之個人資料進行「客戶忠誠度行銷」(Customer retention marketing)。電信業者在3月間亦向FCC申訴,有線電視業者拒絕接受競爭對手代替消費者申請取消原訂服務,而要求消費者親自申請,造成消費者轉換服務提供業者之困擾,不利電信業者爭取客戶轉向訂閱其他業者之影音服務。 針對有線電視業者所提出之申訴,FCC執行局(the Enforcement Bureau)認為,就法條解釋觀之,電信業者此一利用消費者資料的方式並未違反通訊法之規定,故建議FCC駁回有線電視業者之申訴。然而,有鑑於電信業者與有線電視業者之間競爭逐漸白熱化,執行局建議FCC就「客戶忠誠度行銷」行為涉及之客戶資料使用與市場競爭利益發佈「初步立法公告」(Notice of Proposed Rulemaking, NPRM),徵詢各方意見,希望建立能一體適用於各個不同平台之規範,以因應跨業競爭問題。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國眾議院提出「深度偽造究責法案」隨著人工智慧(AI)視覺處理技術愈發進步,圖片及影像的篡改也更加普遍,甚至使人難以分辨其真偽,例如一款應用程式(App)-DeepNude便是運用此技術,將人穿著衣服的照片改作為裸體圖像;此種AI技術因對於社會及被偽造之當事人權益影響重大,進而引起美國立法者的極度重視。 日前維吉尼亞州為了遏止如DeepNude此類的應用程式,便於該州之《復仇式色情法》(Revenge porn law),擴大復仇式色情的涵蓋範圍,使其包括利用機器學習技術偽造他人照片或影像等深度偽造(Deepfake)行為。 但該深度偽造技術之應用,實際上並不僅侷限於情色領域,故美國紐約州眾議員伊薇特.克拉克(Yvette Clarke)於本年度(2019年)6月即提出了《深度偽造究責法案》(Defending Each and Every Person from False Appearances by Keeping Exploitation Subject to Accountability Act of 2019., DEEP FAKES Accountability Act.)草案,本草案令人關注之處除配合現今科技發展特性為規定外,另針對實務上曾衍生的爭議問題,特別將外國勢力或其代理人(foreign power or an agent thereof)介入美國國內政治行為,如意圖影響美國國內公共政策辯論(domestic public policy debate)、選舉或其他不得合法從事的行為等納入規範。 依該草案之內容,其所規範者包含視聽紀錄、視覺紀錄及錄音紀錄;意即任何人使用任何技術或設備製作假冒他人名義(false personation)的紀錄,並於網路或其他知識傳播管道發布者,應有浮水印、口頭陳述或是於文本中有簡要說明等揭露,以使他人得清楚知悉該紀錄並非真實,如行為人有違反該揭露規定並利用深度偽造1.意圖羞辱或騷擾(包含性內容);2.意圖造成暴力、身體傷害、煽動暴亂、外交衝突或干預選舉;3.詐欺犯罪等,將可處5年以下有期徒刑,或科或併科罰金。另若行為人修改或刪除他人揭露之資訊而有上述意圖或犯罪行為者,亦可處以同等罰責。