數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢

  美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。

  數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。

  本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。

相關連結
※ 數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8197&no=64&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
JD SUPRA研析發布企業員工營業秘密管理戰略

  根據JD SUPRA於2022年4月29日研析美國Bay Fasteners & Components, Inc. v. Factory Direct Logistics, Ltd.案例,並刊出「制定全面性的營業秘密戰略」一文指出,員工的入職和離職是企業營業秘密糾紛產生的主要風險之一。企業在僱用員工時須避免營業秘密的污染和竊取。員工離職時,企業應採取離職面談與提醒,以防止離職員工洩露營業機密。以下針對員工入職、員工離職兩個情形,整理建議企業應採取之對策。   員工入職時,為避免新員工帶來任何營業秘密的污染,企業應教育新進員工保護前雇主營業秘密的重要性、如何將營業秘密從know-how區分出來,或是要求員工證明他們不會透露與持有前雇主的機密資訊或任何非公開資訊。然而,為保護企業的營業秘密不被員工竊取,最直接的方法是使用契約中的保密協議、競業禁止條款進行約束,作為保護企業的證據。   離職面談是防止離職員工向未來雇主揭露企業營業秘密的有效方法。在離職面談時,企業應提供員工入職時所簽訂的保密協議條款與相關任職期間的協議約定,並要求離職員工簽屬確認書證明已被告知應遵守的營業秘密內容範圍及其所負義務,同時企業應記錄離職面談過程的內容。若知悉離職員工未來任職公司,建議以信件通知該公司提醒應尊重彼此的營業秘密。此外,企業在得知員工要離職時,應指示IT部門確認員工電腦登錄及下載歷史紀錄是否有洩漏營業秘密之可疑活動,例如大量讀取文件、使用非公司的IP登入。員工離職後,IT部門應盡快停用該離職員工相關帳號權限,同時考慮資料備份,即使沒有檢測到可疑的活動,也建議備份員工的設備使用狀況和帳號log紀錄,以作為日後面臨爭訟時之證據。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

專利連結

  專利連結(patent linkage,亦有稱patent registration linkage)是1984年美國《藥品價格競爭及專利期回復法(Hatch-Waxman Act, HWA)》所創設。傳統上,醫藥主管機關與專利主管機關的權責是有所區分的。然而,醫藥主管機關因為醫藥管理制度與專利制度的連結,使得醫藥主管機關須審查專利相關事務,即醫藥主管機關在審查學名藥上市許可申請時,必須同時判斷該藥品是否侵害專利藥公司就該藥品所掌握的專利。   專利連結制度可以採取幾種形式,最簡單形式的專利連結可能涉及了以下的要求:當有學名藥廠對專利藥公司所生產的的專利藥品提出學名藥,並尋求醫藥主管機關批准時,則應向專利藥公司告知學名藥廠的身份。強度較強的專利連結,在該專利藥品的專利到期或者無效之前,可以禁止醫藥主管機關核發上市許可給學名藥品。而更強的專利連結不僅可以禁止核發上市許可,也可以禁止在專利期間內對學名藥品的審查。   我國目前並未採納專利連結制度,但在我國目前擬積極參與的《泛太平洋夥伴協議(TPP)》中則要求成員應採納專利連結制度,故未來我國動向將值得關注。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP