所謂「大麻」實為大麻屬植物,其中除了較常耳聞的娛樂用大麻外,尚包含工業用大麻(俗稱火麻,hemp),兩者區分標準在於四輕大麻酚(THC)成分高低,後者THC成分小於0.3%,難以做為娛樂用,由於大麻於過去曾有相當時間遭各國所禁止,因此與其有關之研究、專利申請案之數量可謂罕有。然而,近年來隨著各國逐漸放寬對大麻的限制,諸多藥商陸續投入以大麻為成分之藥品開發中,並執此取得專利申請,從而引發相關人士提出此種專利究竟是否具備新穎性之疑問。
日前於2018年7月間,美國即有藥商對此提出專利訴訟,全案大致背景如下:United Cannabis Corp.(下同UCANN)對Pure Hemp Collective Inc.(下同Pure Hemp)提出專利侵權訴訟,指稱Pure Hemp所研發之多款含CBD成分之藥物均侵害其編號9,730,911之專利(下同911專利)。而Pure Hemp則反駁,並稱911專利其中第1、5、16、20、25項聲明將此一專利範圍擴張至所有以液體型態存在之高效價大麻二酚(liquid form of high-potency cannabis),因此若其他藥品商以此一成分生產其他藥物,不論作用、成效是否相同,均可能侵害UCANN之專利權。
本案爭點在於:「以大麻中,早已廣泛流通於市面之大麻二酚(CBD)製成之藥品,是否具備專利法上之新穎性?」。對於系爭專利成分「液態高效價大麻二酚」,事實上已於美國銷售多時,從而此一成分是否具備「新穎性」即容有疑問。業界相關人士指出,美國專利及商標局(U.S. Patent and Trademark Office,下同當局)未審酌上開涵蓋過廣之專利聲明以及未顧及系爭專利成分已於市場流通多年此二種情況,即核發專利許可證,可以說是一種行政怠惰。同時間,也有論者較為持平的認為這可能得肇因於大麻專利申請案之前例過少,使得當局專職審核是否具備新穎性要件之相關人員要難查知。此種說法雖然稍有為當局開脫之嫌,但實際上也間接彰顯了專利審查人員於核發此種專利時,有判斷不周的情形。無論如何,目前全案尚在審判中,詳細結果,均有待判決做成後方知一二。
日本著作權法在2018年修正時,在第35條針對教育相關資通訊(利用網路進行線上教學與傳送預複習資料)之權利對應規定進行增修。修正前,利用人在每次利用時,均需獲得個別權利人之同意並支付授權金;而修正後,僅需一站式的支付補償金即可,無須得到權利人之許可。 然而本條規定原訂於2021年4月施行,但因為新冠肺炎疫情蔓延影響,許多學校、教學機構因停課而使得線上教學之需求提高。日本文化廳為防止感染並考量停課措施有可能長期化,宣布將文學作品、論文及新聞記事等作為線上教學教材,自本月開始無須得著作權人之許可即可使用,亦即將修正施行日期大幅提前。 而作為日本著作權人補償金分配窗口之「教學目的公眾放送補償金管理協會」,也在今年(2020年)4月6日決定本年度相關作品之補償金以特例無償之方式處理。依據上開規定,本年度的線上教學,不論是文學或是音樂等作品,均無須取得著作權人之同意,即可免費使用。
日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。 該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。 此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。 日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。