美國國會於2018年8月13日通過之《出口管制改革法》(Export Control Reform Act of 2018, ECRA)第1758條,以國家安全為由,授權商務部建立對美國新興與基礎技術出口、再出口或移轉之認定與管制程序。有鑑於此,商務部下轄之工業安全局(Bureau of Industry and Security, BIS)於同年11月19日發布了法規制定預告(advance notice of proposed rulemaking),對外徵求關於認定「新興技術」之意見。
BIS指出,美國政府多年來依循《出口管制條例》(Export Administration Regulations, EAR)限制特定敏感技術或產品出口,以避免關鍵技術落入他國手中。惟既有之審查範圍已不足以涵蓋近年許多重大創新技術,故BIS先行臚列了14項擬在未來實施出口管制的新興科技,向公眾徵求其是否確屬「涉及國家安全之特定新興技術」相關意見。該14項科技包含:(1)生物技術;(2)人工智慧與機器學習技術;(3) 定位、導航和定時技術;(4)微處理器技術;(5)先進計算技術;(6)數據分析技術;(7)量子信息和傳感技術;(8)物流技術;(9)積層製造技術;(10)機器人;(11)腦機介面;(12)高超聲速;(13)先進材料;(14)先進監控技術。
除此之外,民眾亦得對如何認定「新興技術」提出一般性之意見,俾將來政策實施更加周全。意見徵求期間從2018年11月19日起,至2019年1月10日截止。
本文為「經濟部產業技術司科技專案成果」
美國德州東區聯邦地方法院於2021年1月11日對Ericsson v. Samsung案發布反禁訴令(anti-anti-suit injunction),禁止三星援引中國大陸湖北省武漢市中級人民法院作出之禁訴令(anti-suit injunction),以強制執行愛立信4G及5G行動通訊技術領域的標準必要專利(standards-essential patents, SEPs)。 本案源於三星與愛立信更新全球專利交叉授權契約時,雙方對於SEP授權價格是否符合公平、合理、無歧視(Fair, Reasonable and Non-discriminatory, FRAND)未能達成協議。故2020年12月11日,愛立信在美國德州東區地方法院對三星提起訴訟並為通知,請求美國法院確認愛立信的SEP授權符合FRAND;三星則於12月7日,選擇向中國大陸武漢法院提起訴訟,請求對愛立信裁定發布禁訴令,禁止愛立信在全球其他國家的法院另行提起SEP訴訟救濟,直到12月25日中國法院核准禁訴令後才通知愛立信。愛立信旋即於12月28日向美國法院提出暫時禁令和反禁訴令(禁止中國禁訴令干擾),美國法院立即同意核發暫時禁令,並於2021年1月11日核發初步禁制令,明定在美國一審判決結束前三星須遵守以下要求:(1)三星在中國武漢法院民事訴訟中的行動,不得干擾美國德州東區地院的合法管轄權;(2)禁止三星援引中國武漢法院禁訴令,剝奪或限制愛立信及其子公司在美國實施專利訴訟權利;(3)三星透過不公平的經濟影響力,迫使愛立信需繳納違反中國法院禁訴令罰款,三星應賠償愛立信因此所受損害。 另外,美國德州東區地方法院認為,本案兩法院間處理的是不同的法律爭議。三星是要求中國武漢法院針對愛立信4G及5G的SEP訂定全球授權價格;愛立信則是請求美國德州東區地方法院確認,兩家公司間的授權協商行為是否遵守FRAND。故美國法院並非要求三星撤銷中國大陸禁訴令,更無意介入中國法院的民事訴訟程序並阻止審查專利糾紛。美國法院核發反禁訴令的目的,是為了維護美國法院對訴訟的適當管轄權,以確保中國及美國二法院都能對本案進行訴訟。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
幹細胞研究 麻州亮綠燈美國麻薩諸賽州州長 Mitt Rom-ney 在五月二十七日否決一項允許在麻州擴大胚胎幹細胞試驗研究法案。州長支持使用成年人的幹細胞或從治療不孕症診所剩餘冷凍胚胎提取細胞的研究,但他呼籲州議員禁止複製,因為提取幹細胞會摧毀胚胎。他說,這相當於創造人類生命只是為了摧毀它,在道德上不具有合理性。此外,他還呼籲州議員在法案中增設一項條款,規定懷孕那一刻即為生命開始,禁止為了其他研究製造胚胎,並限制給捐獻卵子婦女的補償,但州議會拒絕他了的所有這些要求。該州參眾兩會在同月三十一日以壓倒性的票數,推翻州長先前在二十七日所為之否決,並使該法案立即生效。 根據舊州法,若麻州科學家想進行胚胎幹細胞研究,必須獲得地區檢察官批准。新法實施後,科學家不需等待地區檢察官同意後才能進行研究,但州衛生廳將有權管制過程。除此之外,這項新法和聯邦法一樣,禁止複製嬰兒。 美國各州對幹細胞研究的態度迥異,甚至可以說處於分裂狀態。有七個州禁止任何複製研究,十一個州禁止幹細胞研究。但是,加州在二○○四年率先透過法案支持胚胎幹細胞研究,還計劃在十年內從州預算中撥款三十億美元資助這項研究。麻州緊隨其後。紐約、康涅狄格、賓州等也準備放寬對幹細胞研究的限制。 支持胚胎幹細胞研究者紛紛希望,麻州能成為治療脊椎受傷和糖尿病、柏金森氏症等疾病的科學先進研究中心。
美國國會眾議院發布數位資產市場結構法案討論稿,期望建立明確監管框架隨著加密資產與區塊鏈技術的迅速發展,美國國會眾議院於2025年5月5日提出《數位資產市場結構法案討論稿》(Digital Asset Market Structure Discussion Draft),旨在制定新法並同時修改多部美國聯邦金融法規,以建立數位資產的清晰監管框架,期促進美國數位資產市場創新、投資人保障與維護市場公平,其討論重點如下: 1. 數位資產定義與監管職權劃分:於證券法(Securities Act)與商品交易法(Commodity Exchange Act)新增大量關於數位資產的定義,並明確劃分證券交易委員會(Securities and Exchange Commission, SEC)與商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)的監管界線。 2. 去中心化金融(Decentralized Finance, DeFi)、穩定幣與成熟區塊鏈系統的豁免機制:成熟區塊鏈系統、受核准的支付型穩定幣(Permitted Payment Stablecoins)與特定DeFi活動(如:驗證交易、提供用戶介面等)得排除法令適用,為區塊鏈項目提供更彈性的監管途徑。 3. 市場參與者註冊要求:規定數位商品交易所、經紀商、交易商之市場參與者,應向CFTC註冊之相關要求,遵循包含資本規範、客戶資金隔離、交易監控、報告義務等原則,以提升市場透明度和投資者保護。 4. 數位資產領域研究:要求SEC與CFTC應設立金融創新辦公室(Offices of Financial Innovation) 和創新實驗室(LabCFTC),進行多項關於數位資產領域的研究,包含DeFi、金融市場基礎設施之改善等,以提供監管機構新興技術資訊。