加州新修正法規要求公司董事會必須包括女性

  加利福尼亞州(下簡稱加州)州長Jerry Brown於2018年9月30日簽署了一項新法案,規定在加州註冊成立的上市公司以及總部位於加州並在美國證交所上市的外國公司(如德拉瓦州公司),都必須在2019年底之前,於其董事會安排至少一位女性擔任董事,否則將面臨處罰;而此項新規定,亦使加州成為美國第一個要求上市公司將女性納入董事會的州。

  此項規定並規定,在2021年年底前,若董事會的規模為6名以上,至少需有3名女性董事,若董事會的規模為5名成員,則至少需有2名女性董事,若董事會規模為4名以下董事,則至少需有1名女性董事。違反此項規定,將受到以下處罰:(1)首次違反處以10萬美元的罰款;(2)再度違反處以30萬美元的罰款,隨後再處以每次違反的罰款。

  根據統計,日前在美國3000家最大的上市公司的董事會組成中,女性僅占其中18%,於2017年,更有624家上市公司的董事會中根本沒有女性。該法案表明,促進公司董事會性別平等不僅可以改善所有女性的職場機會,同時還能提高生產力,其依據是瑞士信貸(Credit Suisse)於2014年所作出的一項研究,該研究發現,擁有全男性董事會的公司,其平均股本回報率(Return on Equity, ROE)為10.1%,而擁有至少一名女性董事的公司,其平均股本回報率為12.2%。

  根據彭博社(Bloomberg)於2019年的一項新分析,此項變革可為女性提供692個席次,並足以導致美國公司董事會整體性別平衡產生顯著的變化。此外,新紐澤西州(New Jersey)和馬薩諸塞州(Massachusetts)亦在考慮進行類似的立法,其他州也通過了不具拘束力的準則。根據統計,若其他州採用和加州相同立法,羅素3000(Russell 3000)中的公司需要在幾年內為女性開放3732個董事會席次,全國董事會的女性人數將增加近75%。

  縱使該法案的反對者認為,這將增加企業改善種族和民族多樣性的難度,並質疑法案的適法性,然該法案的提出者仍認為,此一措施對於提升女性的代表權是必要的,相信當董事會組成多元化,女性的聲音能被聽到時,對整體勞動力的改善會是更好的。

相關連結
你可能會想參加
※ 加州新修正法規要求公司董事會必須包括女性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8227&no=66&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
美國白宮呼籲採取行動,打擊利用AI生成影像進行之性虐待行為

美國白宮於2024年5月23日公開呼籲採取行動以打擊利用AI生成性影像,及未經當事人同意傳播真實影像的性虐待行為。此次呼籲源自白宮「解決線上騷擾與虐待問題工作小組」(Task Force to Address Online Harassment and Abuse)相關行動、總統第14110號行政命令-「安全、可靠且可信任之AI開發及利用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence),以及尖端AI公司自願管理AI風險之承諾(Voluntary AI Commitments)。 白宮指出,迄今為止生成式AI已淪為性虐待的主要工具,同時,涉及未經同意散布或威脅散布私人性影像,亦將對受害者造成嚴重的心理傷害。白宮呼籲相關利害關係人透過自願性承諾,預防與減輕性虐待影像之影響,如: (1)阻止性虐待影像獲利: 對於從事性虐待影像業務的網站或應用程式,支付平臺與金融機構可限制或拒絕對其提供支付服務。 (2)停止創建深偽性虐待影像 : 對於可透過AI生成性影像之網路服務或應用程式,雲端服務供應商與應用程式商店得減少此類網路服務或應用程式運作。此外,應用程式商店可要求應用程式開發人員採取措施,防止使用者製作非經當事人同意的AI生成性影像。 (3)防止散播性虐待影像: 應用程式與作業系統開發人員可啟用技術保護措施,以保護數位裝置上儲存之內容,防止未經當事人同意分享其影像。 (4)支援並參與為受害者提供有效補救措施之服務: 平臺與利害關係人可選擇與相關組織合作,使性虐待影像受害者可輕鬆且安全地從線上平臺中刪除未經同意之內容。此外,白宮亦呼籲國會修訂於2022年重新授權之「婦女暴力防制法」(Violence Against Women Act Reauthorization),延續並加強原有法律保護效力,同時為AI生成之性虐待影像的受害者提供關鍵援助資源。

OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告

經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。

理財顧問主張前公司競業禁止條款違法,聲請法院中止仲裁程序

於2025年,Parallel Advisors的理財顧問Nicole Amore(下稱Nicole)向其前雇主Falcon Wealth(下稱Falcon)提起訴訟,請求法院停止Falcon提起的仲裁程序。 本案源自於2025年2月,Nicole自Falcon離職後隨即加入Parallel Advisors,而同年4月,Falcon向仲裁機構申請仲裁,主張Nicole違反合約中關於離職後禁止招攬公司現有或者潛在客戶的規定,指稱Nicole除了下載或截圖公司客戶資訊至其個人設備外,更在尚未離職時即與客戶聯繫,通知客戶其即將轉任新公司之事。 對此,Nicole則援引《加州商業與職業法》第16600條和第16600.5條規定,主張該等競業禁止及限制招攬的條款為違法。 此類因為顧問移轉任職所引發之客戶資訊移轉爭議,在顧問產業中時有所聞,惟目前法院尚未對本案作出裁定,後續發展值得持續關注。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP