委託研究開發之智慧財產治理運用指引(委託研究開発における知的財産マネジメントに関する運用ガイドライン,以下簡稱委託研發智財運用指引)為日本經濟產業省制定並於2015年5月15日公布,用於規範該省、或該省所轄獨立行政法人委外執行技術研發計畫而產出的各項智慧財產權之管理運用事宜。
日本於產業技術力強化法第19條納入拜杜法(Bayh-Dole Act)的意旨,建立了政府資助研發所生的智財權成果歸屬受託單位的原則,但同時為促進研發成果的第三人商業化利用,落實國家資助技術研發成果獲得充分運用以達成國家財富最大化的政策方針,因而作成該指引。
委託研發智財運用指引以委託機關和受託單位為規範對象,首先揭示了研發成果商業化利用的重要性,並以此為核心思維,賦予委託機關須就個別委外研發計畫,在計畫開始前訂定計畫智財權管理方針,並向潛在計畫參加者提示的義務,同時,委託機關須確保委託契約中包含智財權等成果管理運用之約款,例如針對成果有無適用日本拜杜法規定、受託單位承諾在相當期間內未妥善運用成果時開放第三人利用等;另一方面,受託單位則有義務就計畫設置智財營運委員會,負責在計畫執行期間處理智財權管理事宜。
本文為「經濟部產業技術司科技專案成果」
美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。 DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。 此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。
歐盟智慧財產局運用科技強化智財保護,正式啟動產品的區塊鏈物流認證計畫(EBSI-ELSA)歐盟智慧財產局(EUIPO)為打擊仿冒,保護歐盟消費者及智慧財產權人,於2023年5月31日宣布正式啟動產品的區塊鏈物流認證計畫(European Blockchain Services Infrastructure - European Logistics Services Authentication, 簡稱EBSI-ELSA)。 根據EUIPO與經濟合作暨發展組織(OECD)於2021年發布的研究指出,全球仿冒產品的貿易額高達4120億歐元,占全球貿易總額的2.5%;每年輸入歐盟的產品約有6%是仿冒產品,嚴重影響歐盟的經濟發展、消費者的健康及安全、智慧財產權人(歐盟品牌企業)的權益。 從2019年至今,EUIPO一直努力研擬透過區塊鏈技術保護智慧財產的具體方案。2022年底,EUIPO與4個不同產業的品牌企業(包含汽車業、電子業、醫藥業、服飾業)、物流業者、荷蘭海關進行一個合作的試驗計畫,內容為透過區塊鏈技術追蹤產品於海外製造後,運送至歐盟銷售的歷程軌跡,以達到認證產品為智慧財產權人生產的目標。該試驗計畫於2023年5月完成概念驗證(proof of concept)。 本計畫結合區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)及數位分身(digital twins)的概念,於生產、運送、海關查驗、配送至消費者的各階段中,在產品上嵌入一個含有序列化代碼(serialization code)的標籤,該代碼必須經產品所屬智慧財產權人的可驗證憑證(Verifiable Credentials, VCs)認證,結合歐盟智慧財產權相關資料庫的資料,以確認產品與其數位分身的連結。 EUIPO將於2023年底前,正式建置一個開源的區塊鏈認證平台,介接執法機構的風險分析系統,以及商標資料庫(TM View)、設計資料庫(Design View)、歐盟執法入口網(IP Enforcement Portal, IPEP)、歐盟區塊鏈智慧財產註冊系統(IP Register in Blockchain),鼓勵供應鏈、物流鏈中的參與者於此平台上交換資料,以更有效率的方式達到認證產品來源真實性的目標。 EUIPO積極運用區塊鏈科技強化歐盟智慧財產的保護,本計畫除可避免消費者買到仿冒產品外,歐盟的品牌企業未來可於相關智財侵權訴訟中,提出區塊鏈紀錄作為證據,有效主張權益。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國白宮發布國家生物經濟藍圖美國白宮終於2012年4月26日正式發布「國家生物經濟藍圖」(National Bioeconomy Blueprint),宣告未來美國將以生物技術為首的投資、研究與商業經濟活動列為優先支持的對象。近年來美國苦思於如何在國內經濟成長疲軟與失業問題上尋求解套,而有鑒於全球「生物經濟」(Bioeconomy)的快速崛起,歐巴馬政府遂寄望於生物經濟,期望藉由支持生物技術的研究創新與商業活動,帶動國內投資、提升就業率及經濟成長,並仰賴生物科技的發展增進國民福址。因此,白宮科學與技術政策辦公室(The White House's Office of Science and Technology Policy, OSTP)便於2011年10月起開始向生物醫藥、生物科技相關產業及研究機構徵集意見,歷經半年的規劃,始產出此部發展藍圖。 國家生物經濟藍圖首先劃定生物經濟的五大趨勢,包括:健康、能源、農業、環境及知識技術的分享。其次揭示了未來美國生物經濟的五大發展策略目標及其具體作法: (一)支持各項研發投資以建立生物經濟的發展基礎: (1)強化生物技術的各類研究發展,如生物醫藥、生質能源、生物綠建築、生物農業等 (2)實施新的補助機制以使得生物經濟投資達最大化,例如國家科學基金會於2012年推動的CERATIV(Creative Research Awards for Transformative Interdisciplinary Ventures)獎補助計畫。 (二)促進生物技術發明的市場應用與商業化: (1)加強生物醫藥的轉譯及管制科學(translational and regulatory science)發展; (2)由國家衛生研究院(National Institutes of Health,NIH)及食品藥物管理局(Food and Drug Administration,FDA)等相關主管機關主動檢視、調整既有法規,以加速生物技術成果的商業化(如生物醫藥的上市)。 (三)改革並發展相關規範,以減少法規障礙、增加規範程序的效率與可預測性: (1)減少可能影響生醫產業發展的法規障礙; (2)對於低風險的醫療裝置,降低其遵循法規的成本負擔; (3)由食品藥物管理局等相關主管機關,對於醫藥產品採行雙向規範審查(Parallel Regulatory Review),以減少產品上市時間。 (四)更新相關國家人才培訓計畫,並調整學術機構對學生訓練的獎勵機制,以符合國家與產業發展的勞動需求。 (五)支持公私夥伴及競爭前合作(Precompetitive Collaborations)關係的發展:由國家衛生研究院及食品藥物管理局等相關主管機關鼓勵、支持公私或私人部門間形成夥伴關係,共同針對生物醫藥及食品安全進行創新研究發展。 由「國家生物經濟藍圖」對美國未來生物經濟發展的策略及具體做法看來,其內容相當廣泛,從促進各種生物技術的研發投資、生技成果商業化運用、產品上市管制鬆綁、科技人員培育,再到公私部門合作的增進,完整涵蓋了整個生物技術產業發展的各個必要環節,雖已點出生物技術產業發展有待突破之處,但對於其具體法規與配套機制,仍有待日後一一落實。因此,未來本藍圖將如何形塑美國各領域生物技術產業的輪廓,並影響法規與促進機制之細節,值得持續觀察之。
新加坡研發可診斷及殺死癌細胞的奈米載體新加坡國立大學生物工程系科研人員宣佈,他們利用天然聚合物製成可以診斷癌細胞、又可殺死癌細胞的奈米載體。該系助理教授張勇相信,這是全球首次成功利用天然聚合物製成奈米顆粒。 研究甲殼素多年的張勇指出,從螃蟹、蝦殼中提煉出來的甲殼素,在實驗室內製成奈米顆粒的過程中,最困難的就是體積的控制,因為天然聚合物分子一般比較大。但最後仍突破瓶頸,以甲殼素研製出直徑約五十奈米的奈米顆粒,很容就可以被比它大一百倍到四百倍的人體細胞吸收。他說,這種利用天然聚合物製成的奈米顆粒,具備適合生物體、擁有生物功能等特性。 這些奈米顆粒將可用來裝載被稱為人工原子,以細微半導體材料製成的量子點和藥物。由於量子點受光源照射時會發光,不同大小量子點發出不同的光,發光時間可以維持幾個小時。因此把裝載量子點和藥物的奈米顆粒送入讓癌細胞吸收後,就可用光源照射,讓醫生可以辨認哪些是癌細胞,再把癌細胞殺死。目前其已與國大醫學院展開合作,在成肌細胞內注入裝載量子點的奈米顆粒,然後把成肌細胞移植到動物心臟,以進一步了解成肌細胞如何修復心臟組織。