地方創生

  「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。

  自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含:

  1. 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。
  2. 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。
  3. 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。

  地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 地方創生, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8247&no=64&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

德國聯邦政府提出《資訊科技安全法2.0》草案

  德國聯邦政府(Bundesregierung)於2020年12月16日通過「提升資訊科技系統安全性的第二版法律(Zweiten Gesetzes zur Erhöhung der Sicherheit informationstechnischer Systeme)」草案,又稱「資訊科技安全法2.0(IT-Sicherheitsgesetz 2.0)」,該草案概述如下: (1)加強德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)權限: BSI可對聯邦行政事務行使控制與審查權、檢測資訊系統和公共電信網路相連的安全弱點、發展分析惡意軟體和攻擊的系統與程序,並擴張其對聯邦通訊技術紀錄資料的儲存期間至12個月。 (2)加強消費者保護: 導入IT安全標籤(IT-Sicherheitskennzeichen),製造商應於該標籤中置入產品安全性聲明與由BSI提供之IT安全性資訊;此外BSI有權要求電信服務業者和產品製造商提供其儲存資料與相關必要資訊。 (3)加強企業作為義務: 關鍵基礎設施提供者有報告及使用攻擊檢測系統檢測安全威脅的義務,該報告義務在草案中將擴張適用於具特定公共利益之公司,如與國防和保密資訊IT產業相關、具經濟上重要性的公司,以及受重大事故條例(Störfallverordnung, StöV)所規範者。 (4)加強國家保護功能: 國家應建立認證機制,並課予關鍵基礎設施的供應者通過該認證的義務,即供應者需確保其設施內的零件不具不適當的技術特性,尤其可能被間諜活動或恐怖主義用以破壞關鍵基礎設施的安全與功能之重要零件。   該草案目前於德國聯邦議院(Deutscher Bundestag)進行審查。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

新加坡採取「雲端友善」政策方針,發布個人資料保護指引

  新加坡個人資料保護委員會(PDPC)為讓企業能妥適的遵循2012年發布的個人資料保護法(Personal Data Protection Act/PDPA),於2013年9月發布個人資料保護法(PDPA)的執行指引文件:「PDPA關鍵概念指導方針(Advisory Guidelines on Key Concepts in the PDPA)」,針對各項如何蒐集、處理及利用個人資料的要求與義務,提供細節性說明及應用範例。執行指引文件的發布,是源自於公眾在實際操作法遵要求時,所發生的執行困難、疑義和衍生的建議和意見,彙整後進行法規釋疑和舉例。此份文件的要求係立基於實用主義及「企業友善(business-friendly)」的理念,幫助機構調整業務運作流程以及妥善的遵守法律的規定。   執行指引文件提供關鍵名詞的詮釋,例如「個人資料」在PDPA裡的定義為:任何可以識別個人、不拘形式及真實性的資訊;針對「謝絕來電條款(Do not call)」的遵循方式亦有細緻化的說明;就各項不同的具體子議題,清楚的提供常識性的措施(Common-Sense Approach)供機構採用,讓法規要求合乎常理,使個人資料保護與企業因需求而對個人資料進行蒐集、利用和揭露之行為間取得衡平。   新加坡個人資料保護法(PDPA)兩大立法目的:強化個人對自己個人資料的資訊控制權;使新加坡因提供充分的安全維護機制而受企業信任,強化新加坡的經濟競爭力與地位。另外,相較於其他國家在國際傳輸上有較嚴格的限制(必須有相同等級的個人資料保護立法為傳輸前提),新加坡的法制理念是僅讓企業遵守最低限度的安全維護要求後,便能將個人資料進行國際傳輸,這樣較彈性的法制設計讓新加坡有望成為亞太地區的資料與研究中心樞紐。

TOP