地方創生

  「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。

  自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含:

  1. 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。
  2. 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。
  3. 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。

  地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 地方創生, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8247&no=64&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
英國期望透過資料使用與近用法案修正案,強化數位證據資料之可信任性

英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

澳洲發布「數位健康2018-2019年報」針對「我的健康紀錄系統」提出檢討及建議

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年11月發布「2018-2019年數位健康年報」,其中針對「我的健康紀錄系統」(My Health Record System)日前發生資料外洩事件提出檢討及隱私建議。   「我的健康紀錄系統」於2012年開始由澳洲數位健康局(Australian Digital Health Agency)負責維運,所有健康報告以電子形式通過網站存檔或讀取,包括處方藥紀錄、醫生診療記錄、影像檢查以及其它測試紀錄等,所有資訊將置於網路並授權醫療專業人員,例如醫生、藥劑師、醫院工作人員和專職醫療人員(例如護士或物理治療師),均可登錄查詢。   「我的健康紀錄系統」原先以民眾自願選擇加入模式運作,以選擇性線上註冊方式概括同意健康資料存取。隨後為促進醫療產業發展,澳洲政府宣布「我的健康紀錄系統」全國適用並提供退出機制至2019年1月31日。而2018年澳洲修訂「我的健康紀錄法」(My Health Records Act 2012)強化個人資料管理相關規範,例如:提供永久刪除權、不得適用於保險目的、違反關鍵隱私保護而增加民事和刑事處罰等。   「2018-2019年數位健康年報」指出,隨著「我的健康紀錄系統」於2019年2月從選擇性註冊模式變為退出模式,關於隱私疑慮的查詢和投訴大幅增加。2018年至2019年OAIC收到57件投訴案,OAIC更對數位醫療產業中的受監管企業進行隱私評估,包括私人醫院、藥房等。為解決民眾疑慮,「我的健康紀錄法」修訂賦予永久刪除權,使投訴數量開始遞減,OAIC亦為醫療服務提供者發布有關保護患者個人健康資料相關指引,並與衛生部門組織合作,促進良好的隱私保護觀念,以增進健康服務提供者對預防和應對資料外洩的理解。

英國修正公布施行「2017年智慧財產權不正當威脅法」,使智慧財產權之法規範更具明確性

  英國智慧財產局於2017年10月1日修正公布施行智慧財產權不正當威脅法(IP Unjustified Threats Act 2017),使智慧財產權之法規範更具明確及一致性,並協助企業免於昂貴的訴訟費用。   所謂智慧財產權之不正當威脅(unjustified threat)係指無智慧財產權、智慧財產權已過期或無效、或雖未實際發生智慧財產權之侵權事實,卻對他人提起侵權之法律行為或措施,該行為耗費成本、引起市場混亂,致使客戶出走並造成企業合法販售商品或服務之業務停滯,並扼殺智慧財產創新之本質,破壞市場衡平。   因涉及智慧財產侵權之法規範複雜、不明確或不一致,且當有侵權之虞尚未進入司法審判程序前其紛爭難以解決,致使智慧財產權人(特別是擁有智慧財產權之中小企業)不願意實施其權利。因此,修正公布施行智慧財產權不正當威脅法將有助於智慧財產權人或第三人知悉何種行為算是威脅,提供明確之規範框架,鼓勵企業建立商談(talk first)文化,使爭議雙方可交換訊息以解決紛爭,而非興訟。並使企業或個人在智慧財產權爭議中取得公平合理的地位,以保護客戶及供應鏈(包括零售商或供應商),避免企業或個人因不正當威脅、惡性之商業競爭,而遭受損害。再者,智慧財產權之不正當威脅法適用於專利權、商標權及設計權,使智慧財產權法複雜之規範更趨明確且一致。

美國科羅拉多州通過《人工智慧消費者保護法》

2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。

TOP