數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。

  於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 數位模擬分身(Digital Twin), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8257&no=55&tp=1 (最後瀏覽日:2026/01/08)
引註此篇文章
你可能還會想看
歐盟行動健康服務(mHealth)眾人引頸期盼的下一步

  歐盟於2015年5月9日在拉脫維亞的里加舉辦了為期一週之「eHealth Week」研討會,包含由歐盟輪值理事會主辦之高階eHealth會議,以及由歐洲HIMSS (Healthcare Information and Management Systems Society)主辦之「WoHIT (World of Health IT Conference & Exhibition)」兩大活動,而2015歐洲mHealth高峰會為其中備受矚目的重要主題活動。該高峰會以推動歐洲mHealth進程之執行為領導思考核心,相關利害關係者(包括公部門、ICT產業、健康保健專業學者)於5月12日以mHealth綠皮書公眾諮詢結果為基礎,針對歐盟目前執行中以及未來可能採取之政策為討論,主要議題包括:1.所蒐集資料之隱私與安全保護。2.生活康樂型apps產品之安全性與品質管控。3.網路經營者對於mHealth市場之進入障礙。   針對資料之隱私與安全保護議題,公眾諮詢結果顯示,關鍵問題在於mHealth apps蒐集使用者資料是否有足夠的隱私與安全保障措施?與會者並認為此問題在資料的第三人再利用情形尤為重要。對此歐盟執委會表示將展開就mHealth apps訂定以產業為主導、範圍涵蓋資料隱私與安全性之行為守則,以建立使用者對mHealth apps之信任感,並提升app開發者對歐盟資料保護法規之遵法意識。   針對生活康樂型apps(包括健康照護相關app)產品之安全性與品質管控議題,透過與會者現場意見調查顯示,認為健康照護相關apps之安全性、品質與可靠性由於欠缺臨床佐證,導致就apps的目的與功效會有錯誤的宣示。值得注意的是,制定法規控管並非多數意見,大多數與會者認為以訂定指引或標準的方式,作為生活與康樂型apps的安全性與品質之依循方針較為妥適。對此歐盟執委會表示會持續跟進此議題並與相關利害關係者討論下一步之行動。   針對網路經營者進入歐盟mHealth市場議題,與會者認為網路經營者將面臨複雜的進入障礙,諸如歐盟相關法規架構的不清與零散、mHealth方案與設備的互通性與開放標準的欠缺等。歐盟執委會明確表示,支持網路經營者進入mHealth市場,目前歐盟正在進行的「Startup Europe」等相關倡議措施,即是以強化網路及資通訊業者商業環境為目的,提供網路經營者法規諮詢、投資媒合、商業模式育成等協助,以降低網路經營者所面對之市場進入門檻並有機會展現其新創能量。

強化驗證技術以遏止網路犯罪

  美國聯邦政府與企業界正朝向增加驗證技術的使用,以遏止線上詐騙的盛行,所謂「雙重驗證( ”two-factor” Authentication)」機制,為美國聯邦財政機構檢測委員會(Federal Financial Institutions Examination Council, FFIEC )與美國芝加哥直銷協會( The Direct Marketing Association, DMA )推行,主要要求檢查除用戶名稱和密碼以外的東西來確認顧客的身份。   美國聯邦財政機構檢測委員會 —包括聯邦儲備(Federal Reserve)和聯邦存款保險公司(Federal Deposit Insurance Corp.,FDIC)等管理者在內,要求銀行2006年底皆必須加強網上身份驗證措施,如給每個顧客一份加密的憑證,這些憑證會向銀行證明用戶的真實身份。且該加密的憑證不會向發放該憑證的其它網站做出回應,這樣既保護了用戶,也保護了銀行。此外,美國聯邦財政機構檢測委員會審查員亦會定期檢查銀行的執行情況;而以美國芝加哥直銷協會為例,其要求會員於交易時所使用之電子郵件,須取得電子郵件系統的驗證,以確保電子郵件係由該協會成員所發出。   如同美國芝加哥直銷協會執行長 John A. Greco 所言,消費者可藉由此種驗證方式增加更多信心,對於其所取的資訊係來自可靠來源並具有合法性,可使市場減低網路犯罪之產生並對於政府、企業及消費者有更多保障。

歐盟執委會啟動《關於標示與標籤AI生成內容之行為準則》之相關工作,以協助生成式AI之提供者與部署者履行其透明度義務

2025年11月5日,歐盟執委會啟動《標示與標籤人工智慧生成內容之行為準則》(a code of practice on marking and labelling AI-generated content,下稱行為準則)之相關工作,預計將於2026年5月至6月間發布行為準則。此行為準則與《歐盟人工智慧法案》(EU AI Act)之透明度義務規定相關。這些規定旨於透過促進對資訊生態系的信任,降低虛假訊息、詐欺等風險。 《歐盟人工智慧法案》第50條第2項及第4項之透明度義務,分別規定 1. 「『提供』生成音檔、圖像、影片或文本內容的AI系統(包括通用AI系統)」的提供者(Providers),應確保其輸出係以機器可讀的形式標示(marked),且可被識別屬於AI所生成或竄改(manipulated)的內容。 2. 「『使用』AI系統生成或竄改以構成深度偽造之影像、音訊或影片內容」的部署者(Deployers),應揭露該內容係AI所生成或竄改。 前述透明度義務預計於2026年8月生效。 後續由歐盟AI辦公室之獨立專家透過公眾資訊與徵選利害關係人意見等方式,推動起草行為準則。此行為準則不具強制性,旨於協助AI系統提供者更有效地履行其透明度義務,且可協助使用深偽技術或AI生成內容的使用者清楚地揭露其內容涉及AI參與,尤其是當向公眾通報公共利益相關事項時。 AI應用蓬勃發展,同時AI也可能生成錯誤、虛構的內容,實務上難以憑藉個人的學識經驗區分AI幻覺。前文提及透過標示AI生成的內容,以避免假訊息孳生。倘企業在資料源頭以標示等手段控管其所使用之AI的訓練資料,確保資料來源真實可信,將有助於AI句句有理、正向影響企業決策。企業可以參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從資料源頭強化數位資料生命週期之管理。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度

2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。

TOP