日本內閣於2018年6月15日決議組成跨部會之統合創新戰略推進會議,並於2019年3月29日發布AI戰略,其中的倫理面向為以人為本之AI社會原則(下稱AI社會原則),希冀藉有效安全的活用AI,推動「AI-Ready 社會」,以實現兼顧經濟發展與解決社會課題的「Society5.0」為最終目標。
為構築妥善應用人工智慧的社會,AI社會原則主張應尊重之價值理念如下:
(一) 尊重人類尊嚴的社會:AI應作為能激發人類發揮多樣能力和創造力的工具。
(二) 多元性和包容性的社會(Diversity & Inclusion):開發運用AI以共創多元幸福社會。
(三) 永續性的社會(Sustainability):透過AI強化科技,以創造能持續解決社會差距與環境問題的社會。
而AI社會原則核心內容為:
(一) 以人為本:AI使用不得違反憲法或國際保障之基本人權。
(二) AI知識(literacy)教育:提供必要的教育機會。
(三) 保護隱私:個人資料的流通及應用應妥適處理。
(四) 安全確保:把握風險與利益間之平衡,從整體提高社會安全性。
(五) 公平競爭確保:防止AI資源過度集中。
(六) 公平性、說明責任及透明性任。
(七) 創新:人才與研究皆須國際多樣化,並且建構產官學研AI合作平台。
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於2024年4月23日發布一項禁止「競業禁止」的最終規定「Non-Compete Clause Rule」(下稱FTC禁止「競業禁止」規定),近期關於該規定效力之相關訴訟引起美國各界廣泛的討論,有執業律師於2024年8月22日撰文提出企業面對該規定是否失效的不確定性,建議及早因應並加強營業秘密保護機制。 關於FTC禁止「競業禁止」規定,旨於美國境內禁止企業與離職員工簽訂競業禁止條款,該規定原預計將於2024年9月4日生效,生效後企業將不能再透過競業禁止約定作為營業秘密保護措施或訴訟上主張,而據FTC統計,約有3,000萬人(近五分之一的美國人)可能因此受到影響。然而2024年8月20日,「Ryan v. FTC」案中,美國德克薩斯州北區聯邦地區法院基於「認為FTC可能超越了其法定授權範圍以及規定過於寬泛」等原因,發布了一項全國性禁令,將導致FTC禁止「競業禁止」規定不會按計劃於2024年9月4日生效之效力,但FTC將會上訴。 對此,有相關實務界律師撰文指出,面對前述判決結果及各州的法規不一導致對於競業禁止條款仍有質疑的情況下,建議企業仍應及早因應並加強營業秘密保護機制,如: 1. 加入跨部門人員的協作:如熟悉企業營運過程中重要的關鍵競爭機密資訊的「業務與財務人員」、了解系統、流程管理之「資訊技術和安全」人員,以及與人員管理、教育訓練相關之「人力資源部門」等人員。 2. 建立合法的保護計畫:承上,該篇文章建議組織應藉由上述人員協助,檢視並強化落實以下機密(營業秘密)保護措施,包括: (1)營業秘密範圍確定:該篇文章提出企業應識別其機密(營業秘密)資訊,並篩選出最重要的類別。 (2)網路與環境設備管理:應確認企業(如:系統、設備、社交媒體等)政策是否足以保護不同類別的機密資訊,並符合法律(如:勞動法)要求,並重新檢視現行資訊安全機制之適當性,如網路安全策略及相關工具適用性、資訊洩漏風險點為何、目前權限管控合理性等。 (3)員工管理:該篇文章建議,企業需確認教育訓練實施,是否足夠向相關人員說明機密資訊和營業秘密對公司的重要性、是否納入對公司相關重要內容(如反壟斷法規的要求);於工作安排上,企業可透過建立人員管理備援機制(即避免一個業務只由單一員工負責),避免業務連續性與資訊安全中斷;於現行企業之保密契約、禁止招攬條款(Non-Solicitation Agreements)、入職/離職契約等契約上,建議確認是否「合法、未過度限制員工、涵蓋所有競爭敏感資訊(如員工及相關客戶或供應商的敏感資訊),在可能適用的地區具有可執行性(法律效力)」等。 (4)外部活動管理:對於外部合作對象,如合作夥伴、競爭對手等,本文稱「勞動力競爭對手(Labor Competitors)」的互動,如資料提供、簽屬合約之合法性等。 綜上所述,競業禁止在國際上的適用性,可能因應機關、各州州法、訴訟等因素受到各種挑戰,導致訴訟上可主張的權利減少,因此執業律師更建議企業應及早審查現行機制並加強或建立營業秘密保護措施加強對於機密資訊的保護。本文建議企業可透過資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)檢視既有管理制度並因應趨勢變動,以PDCA管理循環方式調整精進管理以達到管控目的,建立扎實的企業營業秘密管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國聯邦最高法院禁止警察在未取得令狀前搜索手機內容2014年6月25日,美國聯邦最高法院就Riley v. California一案作出判決,否定了附帶搜索(註)亦適用於行動電話的見解,並要求警察在查看嫌犯手機的內容前必須取得搜索票。 法院見解認為,由於手機裡的資料顯然不會造成執法者人身安全的危險,而在警察取得搜索票的這段期間內,資料也不可能遺失(甚至可以透過切斷手機連線功能,防免資料因遠端移除或加密而遺失),因此手機內容應不在附帶搜索的適用範圍內。判決中另指出,智慧型手機已經成為人們日常生活中無時無刻、無所不在的一部分,其中含有大量的個人資訊,包括通聯紀錄、標記有日期及地點的照片與影片、網路搜尋及瀏覽紀錄、購物清單及GPS定位等,若允許警察在未取得搜索票的情況下查看嫌犯手機,將有可能嚴重侵犯到個人隱私。 首席大法官John Roberts表示:「如果更進一步地細究系爭隱私利益之範圍,用戶在現代手機上所看到的資料,事實上並不儲存在裝置本身。將手機看作一個容器並對其內容實施附帶搜索,這樣的預設是有點勉強的,尤其當手機被用來讀取儲存在他處的資料時,這種說法更是完全無法成立。」 在其協同意見書中,大法官Samuel Alito也認為,相對於非電子資訊,法院為電子資訊提供了更多的隱私保護。同樣是通聯記錄,如果是從嫌犯口袋裡扣押的紙本帳單取得,在法律上毋須取得令狀即得搜索,但如果是儲存在手機裡就不是這麼一回事了。 註:為保護執法者人身安全並防免被告湮滅證據,我國刑事訴訟法第130條規定,檢察官、檢察事務官、司法警察官或司法警察逮捕嫌犯或執行拘提、羈押時,雖無搜索票,得逕行搜索其身體、隨身攜帶之物件、所使用之交通工具及其立即可觸及之處所,學說上稱作「附帶搜索」,為令狀搜索原則之例外。
政府採購雲端服務新興模式暨資安一體考量之研析 英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。 在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。 英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。 根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。 指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。