德、法、盧森堡三國推動跨國境數位測試場域(Digitalen Testfeld))「自動化與聯網駕駛」計畫測試應用

  德國,法國和盧森堡共同推動「數位測試場」:自動化與聯網駕駛之跨國境測試。三國交通部門部長在2017年9月15日法蘭克福國際車展中決定擴大測試場域的範圍。令自動駕駛的測試場域,現在擴及到三國,並進行跨國界的測試。

  三方「數位測試場域」推動的目的在於將科技從實驗室帶到跨國境的實地測試。「行動4.0是邁向歐洲單一市場的一個重要里程碑」,德國交通部長希望「自動駕駛領域是由歐洲來主導的市場」。並由德、法與盧森堡共同簽署三邊「數位測試場域」協議。

  二月初同意的「數位測試場域」,是德法在2016年9月開始執行的「法德電動與數位方案」計畫跨國界測試自動駕駛的一部分。以共同合作,兩國希望推動電動車和自動駕駛領域的創新。如今又加入第三個國家:盧森堡。

  目前,測試場域的選擇,從德國薩蘭邦梅爾茲,經過薩爾路易和薩爾布呂肯,最後到法國梅斯。此次,將盧森堡的貝唐堡設置的測試車道納入成為一個跨越三個國家的車道測試圈。

  計畫所進行測試著重以下應用:車間通信(車對車)和與透過LTE/5g等行動通訊信號與基礎設施通訊;自動化和聯網駕駛下的超車、切車、煞車;普及化的智慧交通引導系統與預警服務。

  數位測試領域讓工業,研究和政策獲得在實際交通狀況的經驗。研究資金提供對象,聯邦政府將提供約1億歐元給測試領域的研究項目。研究測試補助重點在以下領域:駕駛人和車輛之間的相互作用;交通管理和規劃;聯網與資料管理;社會層面。

相關連結
※ 德、法、盧森堡三國推動跨國境數位測試場域(Digitalen Testfeld))「自動化與聯網駕駛」計畫測試應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=7887 (最後瀏覽日:2020/07/04)
引註此篇文章
你可能還會想看
歐洲網路與資訊安全機構和歐洲標準化機構針對網路安全簽訂合作協議

  歐洲網路與資訊安全機構(European Network and Information Security Agency,簡稱ENISA)為了支持網路安全商品和服務進行標準化,於今年七月九日和歐洲標準化委員會(European Committee for Standardization,簡稱CEN)與歐洲電工技術標準化委員會(European Committee for Electrotechnical Standardization,簡稱CENELEC)共同簽署合作協議,來強化網路安全標準化的各項措施。   本合作協議的目的,在於能夠更有效地了解與解決網路和資訊安全標準化的議題,特別是處理和ENISA有所關連的不同訊息和通信技術(ICT)部門。本次簽署的合作協議,可視為是近來ENISA制定新法規的額外延伸,其將給予ENISA針對支持網路資訊安全(NIS)標準的發展,有更多積極的角色。本合作協議涉及的範圍包含下列情況:   ‧ENISA於識別技術委員會(identified technical committees)作為觀察人,CEN與CENELEC的工作小組與講習作為支持歐洲標準的準備   ‧CEN與CENELEC評估ENISA相關的研究成果,並且將其轉化成標準化活動   ‧ENISA參與或適當地擔當依據CEN-CENELEC內部規章所組成的相關技術委員會、工作小組與講習之主席   ‧散布和促進出版物、研究結果、會議或研討會之消息流通   ‧對於促進活動與因NIS標準相關工作之商業聯繫建立和研究網絡提供相互支持   ‧針對處理攸關NIS標準活動的科技和研究議題,舉辦各項局部工作小組、會議和研討會   ‧針對共同利益確定之議題作相關資訊交換   有鑑於ENISA逐漸強調NIS標準化的相關工作,標準化不僅能改善網路安全外,更能提高所有網路安全產品與服務當面對不同網路威脅時的防禦能力。是以,我國資安主管機關是否亦需協調所有資安部門,針對網路安全技術架構研擬或規劃出相關標準化的網路威脅防範模組,則是亟需思考的問題。

美民主黨提案開放網路賭博

  美眾議院金融服務委員會主席Barney Frank於4月26日提案撤銷國會去年備受爭議的禁止網路賭博法案,取而代之制定聯邦層級規範架構的「網路賭博規範與執行法案」(Internet Gambling Regulation and Enforcement Act ),以核准賭博公司線上收取美國國民賭金,並對未成年人、強迫性賭博、洗錢與詐欺等須採取保護措施。   布希總統去年十月所簽署通過的法律,要求銀行與信用卡公司拒絕付款給美國司法管轄權外約2300家的賭博網站,造成賭博業的空前危機。Frank在個人網站批評,〝此法律是對美國人身自由的不當的干預〞。壓力不止於此,WTO也稍早議決美國的此限制不合法,因為某些國內的活動如賽馬,排除外國的公司而形成差別的對待。   Frank 所提的新法案將禁止發執照給任何涉嫌違反賭博、洗錢與詐欺或其他金融法等罪行者,且執照的審理與取得將透過財政部防制洗錢法的協助。而未來消費者上網站必須提供姓名、地址、出生日期與相關身分證明號碼,以和線上支付系統作資料核對。   投資公司Friedman Billings Ramsay認為美國國庫預計五年可增加兩億美金的賭博稅收。

中國大陸開發資訊系統,加強落實電子出版物書號管理

  國家新聞出版廣電總局繼2011年底頒布《音像電子出版物專用書號管理辦法》後,歷經3年整備,去(2014)年底終完成「音像電子出版物專用書號實名申領資訊系統」開發,並於今(2015)年一月上線運行。預計透過此資訊系統,將能簡化書號申領、核發許可程序,落實「中國標準書號」(簡稱中國ISBN)及其配套之「書號實名制」推動。   同時,為配合系統運作,亦修訂《音像電子出版物專用書號管理辦法》,明文要求出版單位應安排、訓練專人從事相關書號的申請管理,及賦與出版單位對於申報內容、出版物品質及出版活動嚴格的自審責任。對於違規使用ISBN者,新法亦明文宣示主管部門可以按相關法規給予處罰,除採取警告發出責令改正的行政罰外,並有罰金的適用。   可以預期的是,在音像電子出版物專用書號實名系統的推動執行下,中國大陸關於電子出版物行政管理過程中的統計、查找、選擇、獲取等將建立統一性更透明的單一標準。正面而言,將促成電子書有秩序的發展環境,改善過去一號多書、買賣書號等亂象。另一方面而言,也表示電子書之出版,將趨於嚴格、減少模糊空間。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP