人工智慧專利加速審查計畫

  人工智慧專利加速審查計畫(Accelerated Initiative for Artificial Intelligence,又稱AI2)是新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2019年4月宣布之計畫,目的在於加快與人工智慧相關的專利申請程序。該計畫自2019年4月26日開始實施兩年,每年有50位名額。專利申請權人申請適用該計畫並申請專利者,最快可在6個月內審核通過並授證。

  適用AI2計畫之技術主體需與AI發明領域密切有關,該申請案之AI功能包含自然語言學習(Natural Language Processing)、影像辨識、聲音辨識、自動化系統(Autonomous Systems)、機器人、預測分析(Predictive Analytics)等;並須應用在生命科學、醫學、農業、資通訊、交通等領域。

  AI2與新加坡智財局2018年實施的「金融科技專利優速計畫」(FinTech Fast Track Initiative, FTFT)類似,FTFT旨在加速金融科技領域之專利申請及審查時效。除了技術主體不同,兩者在申請和審查程序上大致類似:不需支付額外的申請與審查費用、該項專利之首件申請案需於新加坡智財局提出、專利請求項(claims)最多為20項、該項專利之「請求專利核准」與「請求專利檢索審查」文件需於同一日提交、專利申請權人收到實質審查意見書需兩個月內回覆等。

  人工智慧是新加坡轉型為數位經濟國家的關鍵,隨著全球AI專利申請活躍,新加坡智財局支持將AI產品更快地推向市場,並期望有利新加坡爭取更多新創企業及投資。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 人工智慧專利加速審查計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8271&no=64&tp=5 (最後瀏覽日:2025/05/20)
引註此篇文章
你可能還會想看
歐盟執委會公佈GMOs法制之評估報告

  歐盟執行委員會(European Commission)於2011年10月28日公佈兩份針對歐盟基因改造作物(Genetically Modified Organisms, GMOs)之評估報告,這兩份報告係由執委會委託兩個獨立顧問機構所完成,評估時間自2009年至2011年。第一份報告係針對GMOs食品與飼料規範(EU's legislative framework in the field of GM food and feed)之評估報告;第二份報告係針對GMOs耕作規範(legislative framework in the area of GMOs cultivation)之評估報告。此兩份報告之重要性在於,其收集來自官方及民間對於GMOs法制之事實陳述與意見,如健康與環境的保護、國內市場的產物規範等議題,可作為未來改善歐盟GMOs法制的基礎。   評估指出,歐盟的GMOs法制就健康與環境保護之規範並無偏誤;但在效率及透明度上,尚有改善之空間。此外越來越多含有基因改造的農作物輸入歐盟造成健康及環境之威脅,而須進一步改善風險評估之作法以及調整相關法制。   在過去一年中,執委會已採納報告中之部分建議,著手針對現存法制作出微調及改善,包括: 1.在GMOs耕作上需要更多的彈性。 2.低度殘留(Low Level Presence, LLP)的解決方案。 3.收集關於GMOs耕作的社會經濟層面之技術資訊。 4.新作物播種技術之評估。 5.監控活動的加強。 6.針對成員國批准風險評估的指導方針(Guideline)法制化之檢討與改革。 7.對於GMOs重要議題的溝通活動之改善。   除上述之改善工作持續進行,在接下來幾週,執委會將針對農產品輸入許可制度提出改善方案,以建立更嚴謹的許可要求。由這兩份報告的公佈,可以預見未來歐盟將持續完善現存法制,而此兩份評估報告將如何影響歐盟的GMOs規範,值得持續觀察。

歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範

  歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整: (1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本; (2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形; (3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況; (4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。

英國發布《資料主體近用權指引》說明資料近用權法遵重點及實例解析

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年10月21日發布《資料主體近用權指引》(Guidance of Right of access),針對資料主體行使資料近用權之請求(Data Subject Access Request, DSAR),受請求之機構應如何進行識別判斷、簡化處理方式,以及特殊例外情況等法遵重點提供指導方針,並進行實例說明解析,以幫助受請求之機構在面臨資料主體之近用權請求時能快速且有效的處理。   英國「個人資料保護法」(The Data Protection Act 2018)依據歐盟「一般資料保護規則」(GDPR)於2018年重新修訂,其中資料近用權更是對於資料主體相當重要的基本權利,進而影響受請求之機構必須了解如何有效率的處理資料近用權之請求,並確實履行其在法規上所要求的保護義務,主要分為三點: 在資料主體確認其資料近用權所欲請求的範圍之前,受請求之機構依法應回覆時限應予以暫停,以利受請求之機構能有更充裕完整的時間釐清及回應資料主體之近用權請求。 為了避免受請求之機構耗費大量時間判斷何謂「明顯過度之請求」(manifestly excessive request),該指引提供相關定義說明及判別標準。 針對「明顯過度之請求」收取處理費用所包含的項目,例如受請求之機構處理請求所增加人力行政成本,在受請求之機構收取處理費用時可將其納入斟酌。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP