德國聯邦網路局發布電信網路安全要求要點

  德國聯邦網路局(BNetzA)於2019年3月7日公布電信網路營運安全發展需求目錄關鍵要點。該要點係德國聯邦網路局電信通訊法第109條第6項規定,與聯邦資訊安全局(BSI)和德國聯邦資料保護與資訊自由委員會(BfDI)達成協議後制定,並由德國聯邦網路局發布之。此尤其適用於在德國發展5G網路,因該技術係為未來核心關鍵基礎設施,為確保技術發展之安全性,電信網路公司必須滿足相關安全要求。鑑於5G對未來競爭力極具重要性,故用於構建5G之技術必須符合最高安全標準,且應盡可能排除安全問題,該標準同樣適用於所使用的硬體和軟體。附加的安全目錄要點基本內容如下:

(1)系統僅允許從嚴格遵守國家安全法規及電信保密和隱私法規,且值得信賴之供應商處獲得。

(2)必須定期且持續監控網路流量異常情況,如有疑問,應採取適當的保護措施。

(3)僅可使用經聯邦資訊安全局對其IT安全性檢查核可且取得認證之安全相關的網路和系統組件(以下簡稱關鍵核心組件)。關鍵核心組件僅能從獲得信賴保證之供應商/製造商中取得。

(4)安全相關的關鍵核心組)應在交付期間進行適當之驗收測試後方能使用,且須定期和持續進行安全檢查。關鍵核心組件之定義將由德國聯邦網路局和聯邦資訊安全局共同協議訂定。

(5)在安全相關領域,只能聘用經過培訓之專業人員。

(6)電信網路營運商須證明所使用的產品中,實際使用經測試合格之安全相關組件硬體和供應鏈末端的原始碼。

(7)在規劃和建立網路時,應使用來自不同製造商的網路和系統組件,以避免類似「單一耕作」(Monokulturen),即避免技術生態圈無法均衡發展,以及易受市場波動影響之不良效應。

(8)外包與安全相關勞務時,僅可考慮有能力,可靠且值得信賴的承包商。

(9)對於關鍵且與安全相關的關鍵核心組件,必須提供足夠的冗餘(Redundanzen)。

  鑑於德國於3月中旬已拍賣5G頻譜,聯邦政府將大力推廣附加要求,並讓相關企業可以清楚了解進一步計畫。為確保立法層面之具體要求,聯邦政府計畫將對電信法第109條作重大修訂。明確規定操作人員必須證明符合安全規範,並由法律規範相關認證義務。針對關鍵基礎設施中使用的關鍵核心組件應來自可信賴之供應商/製造商,應適用於整體供應鏈。此外,德國聯邦政府擬針對聯邦資訊安全局法進行修訂,包括關鍵基礎設施、其組件可信賴性之相關規範。依聯邦資訊安全局法第9條規定,將在認證框架內提供可信賴性證明。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 德國聯邦網路局發布電信網路安全要求要點, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8273&no=67&tp=5 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
日本總務省公布AI運用原則草案

  日本總務省於2016年10月起召開AI聯網社會推進會議(AIネットワーク社会推進会議),該會議於2018年7月17日公布「報告書2018─邁向促進AI運用及AI聯網化健全發展」(報告書2018-AIの利活用の促進及びAIネットワーク化の健全な進展に向けて-),提出「AI應用原則草案」(AI利活用原則案)。   「AI應用原則草案」制定目的在於促進AI開發及運用,藉由AI聯網環境健全發展,實現以人為中心之「智連社會」(Wisdom Network Society:WINS),其規範主體包括︰AI系統利用者、AI服務提供者、最終利用者(以利用AI系統和服務為業)、AI網路服務提供者、離線AI服務提供者、商業利用者、消費者利用者、間接利用者、資料提供者、第三者和開發者;草案內並根據上開規範對象間關係,整理各種AI運用情境,最終提出「適當利用」、「適當學習」、「合作」、「安全」、「資安」、「隱私」、「尊嚴自律」、「公平性」、「透明性」、「歸責」等十大AI應用原則。總務省表示將持續檢討完善AI應用原則草案細節,以「利用手冊」等形式公布,提供民眾參考。   行政院於2018年初推出「台灣AI行動計畫」,將整合5+2創新產業方案,由相關部會協助發展100個以上的AI應用解決方案,日本總務省所整理之AI應用情境與研提之應用原則,或可作為我國未來推動AI發展之參考。

淺析企業如何善用無形資產獲取商業利基

美國簽署晶片和科技法案,全球科技業將掀起波瀾

  美國近日為防堵中國、其他受關注國家如俄羅斯等國掌握半導體等高科技行業關鍵技術,遂致力於加強培養其本土之半導體及高科技通訊產業。於美國時間2022年8月9日美國總統拜登簽署 「2022年晶片和科技法案」 (CHIPS and Science Act 2022),該法案除可作為2021年頒布之「美國電信法案」之補助資金來源,發展開放式無線電接取網路(Open Radio Access Network, ORAN)外,亦有望大幅度提升美國本土晶片生產量。   本法案提高美國聯邦政府對科學技術研究及開發專案之授權,除授權美國商務部(Department of Commerce , DOC)、國防部(Department of Defense, DOD)外,還結合國務院(Department of State, DOS)透過資金補助之方式,發展影響美國競爭力及國家安全至關重要之半導體製造等高科技產業、人工智慧、量子計算等科學研究,本法案整體編列之預算高達2800億美元,至2027年時,授權金額預計將達1740億美元,而其中將挹注超過520億美元之資金用於發展美國本土晶片之生產及研發。   此外,該法案設有靜態限制,禁止接受補助之半導體企業投資以電子設計自動化(Electronic design automation, EDA)工具設計或製造晶片之中國公司,換句話言,即受補助之企業不得於十年內投資或擴大生產中國製低於28奈米之先進晶片。本法案亦提供25%之稅收優惠予於美國建造、裝設晶片廠之業者,以鼓勵企業進駐美國藉以提升美國生產之晶片總量,同時藉由企業之投資帶動美國各地經濟發展,提高就業率。   藉由本法案之制定,有望降低美國對其他國家晶片之依賴,並得藉此發展科技研究,對未來全球高科技產業供應鏈將造成偌大影響,值得持續關注。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP