特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。
美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含:
2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。
本文為「經濟部產業技術司科技專案成果」
Facebook之實名制政策禁止用戶使用假名,此一行為已遭德國隱私保護機構禁止。德國Schleswig-Holstein邦的資料保護中心組織(Office of the Data Protection Commissioner,簡稱ULD)控訴臉書「實名制」已違反德國電信媒體法(Telemediengesetz)。依據德國「電信媒體法」規定,只要匿名的使用具有技術上之合理性及可行性時,服務供應商必須允許用戶採用假名,惟Facebook的實名制政策卻禁止用戶使用假名。資料保護中心表示,Facebook要求用戶註冊時須填入真實姓名,違反德國電信媒體法第13條第6項。ULD表示,為確保網路用戶權利及遵守網路保護法,臉書應立即終止實名制的執行。Facebook發言人則對ULD指控不以為然,主張「服務供應商有權在現行法律下自行決定所採取之匿名政策」,並表示Facebook採取實名制係為保護社群安全,若發現用戶使用假名將刪除帳號。Facebook發言人認為「這只是在浪費德國納稅人的金錢!此法律之指控毫無意義,同時我們也將據理力爭。」Facebook認為,實名制是該網站經營之重要機制,除了能與其他社群網站做出明顯的市場區隔外,更能積極保護用戶的個人資料。
美國專利商標局針對最近可專利性客體之相關判決發布了備忘錄美國專利商標局下之專利審查政策處(Office of Patent Examination Policy)於2016年11月2日發布了一份備忘錄(memorandum),就近來聯邦巡迴上訴法院所做之可專利性客體(subject matters eligibility, SME)相關判決為整理並對專利審查者提出若干指引。 該備忘錄表示,美國可專利性客體審查手冊(SME guideline,下稱SME審查手冊)自今年5月修改後,聯邦巡迴上訴法院陸續做出相關判決,因此除了先就相關事項為一整理,之後亦會依據這些判決所確立之一些原則以及專利之利益相關人(patent stake holders)之回饋意見對SME審查手冊進行修改。 此備忘錄主要討論的判決為McRO案以及BASCOM案,在此兩判決中,聯邦巡迴上訴法院均認為下級審法院錯誤地依Alice規則認定專利無效。在McRO案,法院認為有關利用電腦所執行之自動人臉語音同步之動畫系統(automatic lip synchronization and facial expression animation )之方法請求項係屬有效。審查者在適用Alice規則時應依據SME手冊的2階段步驟對請求項進行整體考量,且不應忽略請求項中許多特定要件,過度簡化請求項為抽象概念。其並指出「電腦相關技術之改良」,不僅止於電腦運作或是電腦網路本身,若是一些規則(rules)(主要為一些數理關係式(mathematical relationship))可以增進改善電腦之效能者亦屬之。 備忘錄另藉著BASCOM案提醒審查者,在決定請求項是否無效時,應考慮所有的請求項之元件(elements),以判斷該請求項是否已經具備實質超越(substantial more)一般常規、通用之元件(conventional elements)之要素。同時備忘錄並提醒審查者不應依據一些法院決定不做為先例之判決(nonprecedential decisions)之意見。
從廣播電視節目概念之數位質變思考我國廣電法制之規範客體 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。