特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。
美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含:
2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。
本文為「經濟部產業技術司科技專案成果」
澳洲聯邦法院近日在Sanofi-Aventis Australia Pty Ltd與Apotex Pty Ltd一案中([2011] FCA 846),首次針對記載藥品資訊的仿單著作權侵權問題進行處理。法院判決Sanofi的Leflunomide藥品仿單含有Sanofi員工相當的知識與判斷,係Sanofi員工的共同著作,受到著作權的保護。法院並進一步判決Apotex的Leflunomide藥品仿單重製了Sanofi 的Leflunomide藥品仿單的重要部分,在係爭案件中,亦無法推斷出有默示的授權,因此判決Apotex侵犯了Sanofi的Leflunomide藥品仿單的著作權。 儘管藥品仿單的複雜問題目前仍備受爭議與討論,澳洲將在醫療物品修正法案(Therapeutic Goods Legislation Amendment (Copyright) Act 2011)中,針對相關問題加以釐清。前述修正案針對1968年著作權法(Copyright Act 1968)新增44BA條,該條項賦予在1989年醫療產品法(Therapeutic Goods Act 1989)25AA條款下有關醫藥產品資訊的合理使用範疇,明確規範包括供給、重製、發行、散佈/傳播(communicating)、改作等利用全部或部分醫療藥品資訊的行為不侵害產品資訊的著作權。
2014年3月24日歐盟執委會提出有機產品行動計畫2014年3月24日歐盟執委會提出一項具體行動計畫,發起歐洲政策有關有機農業的檢討諮詢,希冀幫助有機農民、生產者和零售商適應新的政策,投入有機農業技術研發,並規劃於2015年召開食品業與研發人員溝通會議,進而加入專家意見、利益相關者與地區公眾共同集徵意見。其中,為了幫助有機農民、生產者和零售商調整至所建議的政策規劃方向,歐洲執委會將計畫推動一項有機生產行動計劃,以推動農村發展和歐盟農業政策措施,鼓勵有機農業以加強歐盟有機生產與研究創新項目之間的聯繫,並鼓勵使用有機食品。具體行動計畫重點為: 一、增加歐盟有機生產者的競爭力: 二、為鞏固消費者信任度,計畫執行將對有機產品及其農業技術研發展開控管措施; 三、加強歐盟統一有機產品的標示規格。 另外,歐盟執委會亦通過有機產品生產和標籤規範修法草案(The Legislative Proposals for a New Regulation on Organic Production and Labelling of Organic Products),將擬制定更完善的有機產品法規,以杜絕假冒及混充。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。