加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)與加拿大首席選舉官(Chief Electoral Officer of Canada, CEO)於2019年4月1日聯合針對聯邦政黨發布個人資料保護管理之指引(Guidance for federal political parties on protecting personal information)。目前加拿大選舉法(Canada Elections Act, CEA)僅概括規範政黨須制定隱私政策,以保護選民之個人資料,惟其卻未有具體法規制度落實。對此加拿大隱私專員辦公室認為政黨必須提出具體隱私政策來履行其法律義務。
現行加拿大選舉法規範聯邦政黨必須於其網站上公布隱私政策,並提交給加拿大選務局(Elections Canada)。若其隱私政策變更,必須通知首席選舉官,且即時更新網站上隱私政策版本。加拿大聯邦各政黨須於2019年7月1日前完成相關規範,為具體實踐政黨隱私保護制度,加拿大隱私專員辦公室提出幾點隱私政策之必要條件:
一、 聲明蒐集個人資料之類型與如何蒐集個人資料?
二、 如何保護其蒐集之個人資料?
三、 說明如何利用個人資料?是否會將個人資料給予第三方?
四、 針對個人資料蒐集、利用之人員如何培訓?內部控管機制為何?
五、 蒐集分析之資料為何?是否有利用cookie或相關應用程式蒐集?
六、 設置處理個資隱私疑慮專責人員
除此之外,該辦公室更建議參採國際隱私保護作為,著重公平資訊原則,政黨於個資隱私保護上須有其問責制、目的明確性、透明化、限制性蒐集,且未經當事人明確同意不得蒐集政治觀點、宗教或種族等敏感性個資,並應建置保障性措施與合規性管理機制。
美國財政部(The Treasury Department)與美國貿易談判代表署(USTR)就跨太平洋夥伴協定(Trans-Pacific Partnership, TPP)數據監管要求之規範提出一項有關金融服務之提案,以保護美國境外金融數據資料之問題。該提案之主要目的係因TPP電子商務專章規範締約國不得要求外國業者須於投資當地設立數據儲存伺服器,然而,該專章排除金融服務業之適用,因此,在該提案中提出締約國不得要求外國金融服務業者在其境內應設立數據儲存伺服器,且要求美國政府於未來及目前談判中之國際經貿協定,如TiSA、TTIP、美國與中國雙邊投資協定(BIT)等,使金融服務業者無須於投資當地設立數據儲存伺服器。在此提案中,美國亦有意要建立一個國家對國家之爭端解決機制來解決相關問題。 美國貿易談判代表Michael Froman表示此乃透過協調利害關係人與國會議員,在國家優先利益的領域中尋求多方共識,美國將會繼續在TPP中實施並執行其協調工作。證券業與金融市場協會(the Securities Industry and Financial Markets Association)執行長肯認美國財政部及美國貿易談判代表署之作法。 雖然TPP業已完成談判,談判結果並不會受到本次提案談判立場之影響,但美國官員仍有意透過雙邊談判的途徑,與TPP國家中受金融業者關切的國家,如越南、馬來西亞、新加坡與汶萊展開諮商,以解決在TPP中的這項議題。
英國財政部宣布將不再採用二代民間融資英國財政部於2018年10月29日宣布將不再採用二代民間融資(Private Finance 2,PF2)。 PF2是英國自1992年推行的民間融資提案(Private Finance Initiative, PFI)的進階版。PFI屬於「公私協力」(Public Private Partnerships)範疇,其概念為政府運用民間機構的管理能力及商業的專業知識,和民間機構簽訂PFI契約,先由民間機構興建、營運公共建設,政府再向民間機構購買該公共建設之公共服務。政府在民間機構營運公共建設後,依據雙方契約所訂之評估指標及規範,檢視民間機構之服務品質有無符合約定,再予以付款,倘未達到績效指標或資產無法提供服務時,則有扣款機制。 PFI在英國運作20多年,雖確實有效減輕政府財政負擔,但也有長期計劃缺乏彈性、私部門獲利太多、採購耗時等缺點。因此,英國於2011年對PFI進行改革,推出PF2。PF2有PFI制度及基本架構,但讓政府參股投入部分資金,成為投資者之一;簡化案件行政程序,從計畫啟動到選出最優申請人,原則不得超過18個月;要求民間機構披露公開資產報酬,提升透明度等。 PFI和PF2契約雖然已用於資助學校、醫院和其他基礎設施的建設,但此二模式的使用率近來已顯著下降,此可從英國雖修正PFI推出PF2,但PF2迄今僅使用了六次,以及目前的PFI及PF2契約,有86%是在2010年前簽立可證。此外,採用PFI或PF2契約後,如發生契約提前終止情形,機關須依約買回公共建設,導致仍須支付高額費用,凸顯PFI或PF2契約難以調整的不靈活性而飽受批評。又,預算責任辦公室(Office of Budget Responsibility)亦表示民間融資提案(private finance initiative)對政府的財政具有風險。 英國財政部已聽取前述各個關注,並且決定未來的施政規劃不再採用PF2 ,但財政部同時表示不會終止現有的PFI和PF2契約,會履行承諾完成履約,因為契約終止所生之高額補償,將使PFI或PF2不具「公帑節省價值」(Value for Money),故政府仍將繼續致力提高現有PFI契約的價值。 PFI起源於英國,此模式受不少國家效尤。而今英國宣布不再採用PFI的進階模式-PF2,此政策對PFI有無影響,以及英國政府未來是否會再規劃新的採購模式或公私協力措施以建設公共服務設施,相信將受到各國的關注。
美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。 在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。 該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。
人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。