日本經濟產業省於2018年召開「IoT和AI可能衍生之新型態交通服務研究會」(IoTやAIが可能とする新しいモビリティサービス関する研究会),並於2019年4月公布「朝向新型態交通服務之活性化」(新しいモビリティーサービスの活性化に向けて)報告;國土交通省亦自2018年底起召開「都市與地方新型態交通服務懇談會」(都市と地方の新たなモビリティサービス懇談会),於2019年3月公布中間結果。經產省和國土省根據上述會議結論,自2019年4月起,發起支援地方政府挑戰推動新型態交通服務之新計畫「智慧交通挑戰」(スマートモビリティチャレンジ)。
「智慧交通挑戰」計畫之目的,在於促使地方政府與企業合作,以實現自動駕駛社會,並透過新型態交通服務解決既有交通問題和加速地方活性化,其具體措施包括︰(1)透過設置「智慧交通挑戰推進協議會」及舉辦論壇,促進地方政府和企業間共享資訊,形成工作網路;(2)經濟產業省補助新型態交通服務實用化、計畫制定和效果分析等計畫;(3)國土交通省補助MaaS等新型態交通服務實驗,以及建構以解決地區交通服務為目的之模型等計畫。經產省與國土省分別自4月起對外公開募集提案,最終於75個提案中選出28個計畫,將於今年起陸續施行。
本文為「經濟部產業技術司科技專案成果」
內閣官房副長官於2019年12月18日召集國土交通省、警察廳、經濟產業省、防衛省等相關主管機關,召開第9次「小型無人機相關府省廳聯絡會議」(小型無人機に関する関係府省庁連絡会議),並決議由內閣於2020年向國會提交《小型無人機於重要設施周邊地區上空飛行禁止法》(重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律,以下簡稱「小型無人機等飛行禁止法」)修正案,將重要國際機場及其周邊地區列為小型無人機的永久禁航區。 《小型無人機等飛行禁止法》之目的係禁止小型無人機於國家重要設施上空飛行,以防患於未然,並維護國政中樞機能和良好國際關係,以及確保公共安全。依該法第2條、第9條第1項之規定,小型無人機之禁航區域包含國會議事堂、內閣總理大臣官邸、其他國家重要設施等、外國領事館等、國防相關設施和核能電廠,以及設施周邊經指定之地區。 而在機場部分,為預防危險並確保大會能順利準備及營運,日本已透過《世界盃橄欖球賽特別措施法》(ラグビーW杯特措法)及《東京奧運暨帕運特別措施法》(東京五輪・パラリンピック特措法),將國土交通大臣指定之機場及其周圍300米地區增列為小型無人機禁航區,但僅為大會期間的暫時性措施。內閣考量小型無人機之飛行可能會影響機場功能運行,甚至對經濟帶來重大不良影響,欲透過《小型無人機等飛行禁止法》修正案,將該暫時性措施改為永久措施。
歐盟啟動2030年提升建築能源效率合作創新研究為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。 本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。 適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。
零工經濟(Gig Economy)近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。 面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。 國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。
日本訂定氫燃料基本戰略,推廣氫燃料使用並降低碳排放。日本於2017年12月26日「第2次再生能源及氫氣等閣員會議」中,作為跨省廳之國家戰略,訂定「氫燃料基本戰略」(下稱「本戰略」),2050年為展望,以活用及普及氫燃料為目標,訂定至2030年為止之政府及民間共同行動計畫。此係在2017年4月召開之「第2次再生能源及氫氣等閣員會議」中,安倍總理大臣提出為了實現世界先驅之「氫經濟」,政府應為一體化策略實施,指示於年度內訂定基本戰略。為此,經濟產業省(下稱「經產省」)邀集產官學專家,召開「氫氣及燃料電池戰略協議會」為討論審議,擬定本戰略。其提示出2050年之未來之願景,從氫氣的生產到利用之過程,跨各省廳之管制改革、技術開發關鍵基礎設施的整備等各種政策,在同一目標下為整合,擬定過程中有經產省、國土交通省、環境省、文部科學省及內閣府為共同決定。 氫燃料基本戰略之訂定,欲解決之兩大課題: 第一,能源供給途徑多樣化及自給率的提高:日本94%的能源需依靠從海外輸入化石燃料,自給率僅有6-7%,自動車98%的燃料為石油,其中87%需從中東輸入。火力發電場所消費的燃料中,液態天然氣(LNG)所佔比例也在上升中,而LNG也幾乎全靠輸入。 第二,CO2排出量的削減。日本政府2030年度之CO2排出量預定比2013年度削減25%為目標。但是,受到東日本大地震後福島第一核能發電廠事故的影響,日本國內之核能電廠幾乎都停止運轉,因此LNG火力發電廠的運轉率也提高。LNG比起煤炭或石油,其燃燒時產生CO2之量較為少,但是現在日本電力的大部分是倚賴LNG火力發電,CO2排出量仍是增加中。 因此本次決定之氫燃料基本戰略,係以確實建構日本能源安全供給體制,並同時刪減CO2排出量為目標,能源如過度倚賴化石燃料,則係違反此二大目標,因此活用不產生CO2的氫燃料。但是日本活用氫燃料之狀況,尚處於極小規模,或者是實驗階段。把氫燃料作為能源之燃料電池車(FCV),其流通數量也非常少,而氫燃料販賣價格也並非便宜。 氫燃料戰略之目標係以大幅提高氫燃料消費量,降低其價格為目的。現在日本氫燃料年間約200噸消費,預定2020年提高至4000噸,2030年提高至30萬噸,同時並整備相關商用流通網。為了提高氫燃料消費量,需實現低成本氫燃料利用,使氫燃料之價格如同汽油及LNG同一程度之成本。現在1Nm3約為100日圓,2030年降低至30日圓,最終以20日圓為目標,約為目前價格之5分之一為目標,在包含環境上價值考量,使其具備與既有能源有同等競爭力。 實現此一目標需具備:1.以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈;2.燃料電池汽車(FCV)、發電、產業利用等大量氫燃料利用及技術之開發。 以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈 透過活用海外未利用資源,以澳洲之「褐碳」以及汶萊之未利用瓦斯等得製造氫,目前正在大力推動國際氫燃料供應鏈之開發計畫。水分含量多之褐碳,價格低廉,製造氫氣過程中產生之CO2,利用目前正在研究進行中之CCS技術(「Carbon dioxide Capture and Storage,CO2回收及貯留技術),將可製造低廉氫氣。為了將此等海外製造之氫氣輸送至日本,使設備大規模化,並開發特殊船舶運輸等,建立國際氫燃料供應鏈。再生能源採用的擴大與活化地方:再生能源利用擴大化下,為了確保能源穩定供應,以及有必要為剩餘電力之貯藏,使用過度發電之再生能源製造氫燃料(power to gas技術)而為貯藏,為可選擇之方法,目前正在福島浪江町進行相關實證。 燃料電池汽車、發電、產業利用等大量氫燃料之利用 (1)電力領域的活用:前述氫氣國際供應鏈建立後,2030年商用化實現,以17日圓/kwh為目標,氫燃料年間供應量約30萬噸左右(發電容量約為1GW)。未來,包含其環境上價值,與既有LNG火力發電具備相等之成本競爭力為目標。其供應量。年間500萬噸~1000萬噸左右(發電容量16~30GW)。2018年1月開始在神戶市港灣人工島(Port Island),以氫作為能源,提供街區電力與熱能,為世界首先之實證進行。 (2)交通上之運用:FCV預計至2020年為止,4萬台左右之普及程度,2025年20萬台左右,2030年80萬台左右為目標。氫氣充填站,2020年為止160站、2025年320站,2020年代後半使氫氣站事業自立化。因此,管制改革、技術開發及官民(公私)一體為氫氣充填站之策略整備,三者共同推進。 燃料電池(FC)巴士2020年引進100台左右、2030年為止1200台左右。(FC)燃料電池堆高機2020年引進500台左右,2030年1萬台左右。其他如:燃料電池卡車、燃料電池小型船舶等。 (3)家庭利用:家庭用氫燃料電池(ENE FARM),係以液態瓦斯作為能源裝置,使用改質器取得氫,再與空氣中氧發生化學變化,產生電力與熱能,同時供應電力與熱水。發電過程不產生CO2,但是改質過程抽出氫時,會排出CO2。降低價格,使其普遍化為目標,固體高分子型燃料電池(PEFC)在2020年約為80萬日圓,固態酸化物燃料電池(SOFC)約為100萬日圓價格。在集合住宅及寒冷地區、歐洲等需求較大都市,開拓其市場。2030年以後,開發不產生CO2之氫燃料,擴大引進純氫燃料電池熱電聯產。 其他例如: (4)擴大產業利用。 (5)革新技術開發。 (6)促進國民理解與地方合作。 (7)國際標準化作業等。 此一氫燃料戰略之推行下,本年3月5日為了擴大普及FCV,由氫氣充填營運業者、汽車製造業者、金融投資等11家公司,共同進行氫氣充填站整備事業,設立「日本氫氣充填站網路合作公司(英文名稱:Japan H2 Mobility,下稱「JHyM」)」,加速並具體化氫氣充填站之機制,今後以JHyM為中心,推動相關政策與事業經營。預定,本年春天再設立8個充氣站,完成開設100個氫氣充填站之目標。