美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。
於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。
於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。
綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。
新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
英國人工授精暨胚胎新法上路 冷凍胚胎保存規則丕變英國2008年人工授精暨胚胎法(Human Fertilisation and Embryology Act 2008)關於胚胎保存之規範及其授權制定之附則(supplemental provision),於今年(2009)10月1日正式生效,大幅放寬胚胎保存的限制。依據舊法,胚胎保存之原則法定期間為5年,但基於醫學因素致胚胎為夫婦懷有具血緣關係(genetically-related)子女之最後機會,則胚胎保存期限可延長至10年,或最長可延至接受疾病治療婦女55歲。而新法則大幅放寬胚胎的保存期限至55年,並廢止上述接受疾病治療婦女僅能保存胚胎至55歲之規定。 這項管理胚胎保存的新法顯示了胚胎保存新舊法間的複雜性與爭議性,在法令生效前幾週因遭受法律質疑與遊說而做修正,由於先前由於新法放寬保存期限至55年的規定,僅適用於2004年10月1日後之保存胚胎,而在此之前的保存胚胎則僅限於不移植於代理孕母(surrogate)之胚胎始能延長保存期限,致遭到法律上不公平的質疑,並有向英國首相進行請願,而最終刪除上述限制。 但新法的問題並不僅於此,尚包括有婦女因在新法生效前屆滿55歲,使之前因接受子宮頸癌治療所保存的胚胎面臨被銷毀的命運,致有夫婦就此提起法律訴訟,質疑銷毀係爭胚胎有違反歐洲人權公約(European Convention on Human Rights)家庭生命權利之虞,並對面臨銷毀之胚胎提起假處分,使其胚胎暫時免除被銷毀的下場,然此項法律訴訟尚在進行,尚無從得知法院之決定。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
從Google提起的「FITBEING」商標異議案談JPO對於近似與著名商標的判斷日本特許廳(Japan Patent Office,後稱JPO)於2024年6月駁回Google公司對來自中國大陸的深▲せん▼小▲ちぇ▼科技有限公司(後稱中國大陸公司)有關「FITBEING」文字商標的註冊異議,認為中國大陸公司的「FITBEING」商標與Google公司的「FITBIT」商標在外觀、發音等方面存在顯著差異,因此不會對消費者造成混淆。 中國大陸公司於2023年1月在日本申請註冊「FITBEING」文字商標,指定於第14類的「鐘錶和計時儀器」等商品。Google公司於同年8月對該商標提出異議,主張「FITBEING」商標與其於2018年註冊的「FITBIT」文字商標,在拼寫及發音上相似,並有致相關消費者混淆誤認之可能,違反日本商標法第4條第1項第11款、第15款。此外,Google公司亦表示其「FITBIT」文字商標已為Google穿戴設備的「周知」標識,應具有排他性。 JPO指出,儘管「FITBEING」和「FITBIT」在拼寫上皆以「FITB」開頭,惟二者字尾的「ING」和「IT」無論在文字外觀、字母數量還是音節數量上的差異皆具顯著差異。此外,JPO亦評估「FITBIT」商標是否為「周知」商標。依日本商標法第4條第1項第10款規定,與消費者廣泛認識其為表示他人營業商品或服務之商標相同或近似,使用於同一或類似之商品或服務者,不得註冊商標。本案中,JPO指出Google公司所提供的證據,包括各國市場調查報告和廣告宣傳資料,卻未能提交足夠的日本市場調查資料,以證明「FITBIT」在日本已被相關消費者廣泛認識為Google穿戴式設備的「周知」標識。因此,基於雙方商標近似及周知程度,JPO駁回了Google公司的異議,認定兩商標無導致消費者混淆誤認之虞。 由本案可知,日本JPO對商標近似性的判斷標準與我國大致相同,均會考量商標的外觀、發音及涵義的差異。企業在設計創作商標時,應檢視商標的外觀、讀音以及涵義,避免欲註冊商標與現有商標近似,以避免無法取得註冊商標。此外,若欲主張「周知商標」,企業應確保提交充分的當地市場調查資料證明商標的知名程度,包括當地市場的消費者調查結果及銷售資料等,當面臨爭議時,用以主張商標的著名程度。 本案目前經JPO駁回Google公司的異議後,尚無進一步的訴願或訴訟公開資訊。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)