馬來西亞下議院於2019年7月2日通過新的商標法案,馬來西亞商標法(Trademark Act 1976)為該國商標註冊及使用之規範,自1976年實施至今已經過多次修正。此次新修正不僅擴大非傳統商標之註冊申請,也包含集體商標的保護、商標得作為金融工具、單一國際商標申請程序及侵權補救措施等。新法修正後,除原先傳統商標(如簽名、文字、字母、數字、圖形)得以申請,允許氣味、聲音、形狀及顏色等註冊為商標。擴大保護範圍除考量國內外貿易所需,也為吸引國際企業投資馬來西亞。
另一方面,本次修正也被視為加入商標國際註冊馬德里體系(The Madrid system for the international registration of marks) 預作準備。該體系包含由世界智慧財產權組織(WIPO)管理的一項國際條約:「商標國際註冊馬德里協定有關議定書(Protocol Relating to the Madrid Agreement Concerning the International Registration of Marks)」(下稱議定書),若申請人為有加入馬德里體系之國家國民,即可利用單一商標於該體系內之國家註冊商標,且僅得以一種語言且支付一筆費用尋求對同一商標在多國內受保護。
根據世界智慧財產權組織截至2019年統計,「馬德里議定書」已有105位成員,涵蓋121個國家,其中也包含東協大部分成員。由於東協(ASEAN)中,僅剩馬來西亞與緬甸尚未加入該議定書,故也被視為履行東協共同體之義務。
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟執委會發布關於歐洲境內資料流監控之新研究歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。 在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。 該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量 該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。 作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。
新加坡擴大適用中小企業數位化政策以因應COVID-19疫情新加坡為實現「智慧國家」(Smart Nation)願景,長期致力於數位發展政策之推動。當中,在「協助產業加速數位化」方面,針對中小企業建置「中小企業數位化計畫」(SMEs Go Digital),並將其下「預先批准解決方案」(Pre-Approved Solutions)與「生產力解決方案補助金」(Productivity Solutions Grant, PSG)列為重要措施之一;甚而,於此波COVID-19疫情下,新加坡再度強化該等制度之運用,藉此加速中小企業數位發展進程。 所謂「預先批准解決方案」與「生產力解決方案補助金」,係指中小企業得透過企業科技庫(Tech Depot)網頁,了解中小企業數位化計畫下有哪些經過資通訊媒體發展管理局(Infocomm Media Development Authority, IMDA)預先批准的數位解決方案,並在取得供應商報價後,向新加坡企業發展局(Enterprise Singapore, ESG)申請「生產力解決方案補助金」之支援。於COVID-19疫情發生前,預先批准的數位解決方案包含「銷售與庫存管理」、「會計與文件管理」、「顧客關係管理」、「人力資源管理」、「網路安全」、「行動裝置門禁控制」及「車隊管理」等等13項系統,中小企業最高得享有報價70%的補助。 於COVID-19疫情發生後,除原有數位解決方案外,IMDA再預先批准下列內容,ESG亦於2020年4月1日到2020年12月31日間將所有方案的最高補助水平提升至80%,協助中小企業因應疫情並維持業務連續性: 遠距上班─線上協作工具(Online collaboration tools) 遠距上班─虛擬會議和電話工具(Virtual meeting and telephony tools) 訪客管理─佇列管理系統(Queue management system) 訪客管理─溫度檢測方案(Temperature screening solutions) 新加坡為因應COVID-19疫情,加強適用原有中小企業數位化計畫下的預先批准解決方案與生產力解決方案補助金,在既有制度上迅速地進行調整,以減緩疫情造成的產業衝擊,甚至加速中小企業數位發展之進程;另一方面,藉由COVID-19的特性,協助中小企業導入遠距上班與訪客管理等數位技術,改善過往因資金有限而未能優化營運基礎設備之難題,為中小企業開啟新的可能。
G7發布金融機關因應勒索軟體危脅之基礎要點由於近年來勒索軟體對國際金融帶來重大影響,七大工業國組織G7成立網路專家小組CEG(Cyber Expert Group),並於2022年10月13日訂定了「金融機關因應勒索軟體危脅之基礎要點」(Fundamental Elements of Ransomware Resilience for the Financial Sector),本份要點是為因應勒索軟體所帶來之危脅,提供金融機關高標準之因應對策,並期望結合G7全體成員國已施行之政策辦法、業界指南以及最佳之實踐成果,建立處置應變之基礎,加強國際金融的韌性。該份要點內容著重於民營之金融機關(private sector financial entities),或關鍵之第三方提供商(critical third party providers),因其本身有遵守反洗錢和反恐怖主義之融資義務,但也可依要點訂定之原意,在減少自身受到勒索軟體之損害上,或在處置與應變上有更多的彈性。而日本金融廳於2022年10月21日公布該份要點之官方翻譯版本,要點所提列之重點如下: 1.網路安全策略與框架(Cybersecurity Strategy and Framework): 將因應勒索軟體威脅之措施,列入金融機關整體的網路安全策略與框架之中。 2.治理(Governance): 支付贖金本身可能於法不容許,也可能違背國家政策或業界基準,金融機關須在事件發生前,檢視相關法規,並針對潛在的被制裁風險進行評估。 3.風險及控制評估(Risk and Control Assessment): 針對勒索軟體之風險,應建立控制評估機制並實踐之。因此可要求金融機關簽訂保險契約,填補勒索軟體造成的損害。 4.監控(Monitoring): 針對潛在的勒索軟體,金融機關有監控其活動進而發現隱藏風險之義務,並向執法與資通安全機關提供該惡意行為之相關資訊。 5.因應處置、回覆(Response): 遭遇勒索軟體攻擊之事件,就其處置措施,須依原訂定之計劃落實。 6.復原(Recovery): 遭遇勒索軟體攻擊之事件,將受損之機能復原,須有明確的程序並加以落實。 7.資訊共享(Information Sharing): 須與組織內外之利害關係人共享勒索軟體之事件內容、資訊以及知識。 8.持續精進(Continuous Learning): 藉由過往之攻擊事件獲取知識,以提高應變勒索軟體之能力,建立完善的交易環境。 此要點並非強制規範,因此不具拘束力,且整合了2016年G7所公布的「G7網路安全文件之要素」(G7 Fundamental Elements of Cybersecurity document)之內容。綜上述CEG所提列重點,針對我國金融機關在抵禦網路攻擊之議題上,應如何完善資安體制,與日本後續因應勒索軟體之政策,皆值得作為借鏡與觀察。