歐洲法院(European Court of Justice, ECJ)於2018年7月作出裁定,利用新植物育種技術(New Plant Breeding Techniques , NPBT)誘變(mutagenesis)所得之作物亦屬於基因改造生物(genetically modified organism , GMO),因此須適用歐盟的基因改造生物管制指令(GMO Directive 2001/18/EC)。
對於不涉及外源基因添加的新植物育種技術,是否應視為基因改造生物,並需獨立於添加外源基因之基因改造生物另制定框架,對此引發了強烈的討論,科學界/農民跟環保團體/有機農法之農民之間抱持著相反的態度。
科學界/農民認為,歐洲法院是以近20年前所通過的基因改造生物管制指令所做出的解釋,並未考量該技術進步所造成的差異,其認為新植物育種技術之誘變與自然產生的誘變無實質差異,而需要就新植物育種技術另外進行立法。
歐盟有機農民運動聯盟(IFOAM EU)於2019年7月24日發出聲明,認為若將新植物育種技術排除於歐盟基因改造生物管制指令之適用,將造成有機農業與傳統非基因改造生物之農民無法於農作物生產過程中排除基因改造生物之存在,最終將使得消費者、農民、食品加工者失去選擇非基因改造生物之選擇自由,故樂見歐洲法院之見解。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國Ofcom公佈感知無線電技術之諮詢結論英國Ofcom於2011年9月1日公佈了關於閒置頻譜、地理定位(geolocation)資料庫與感知無線電的最新諮詢結論,本次行動使英國成為歐盟中第一個宣佈感知無線電發展計畫的國家。 Ofcom自2005年「數位紅利審查報告書」(Digital Dividend Review)以來,藉多次的聲明與諮詢確立數位紅利閒置頻譜使用的三大方向: 其一,將用於enhanced Wi-Fi,相較於當前使用2.4G的Wi-Fi技術,透過原本無線電視所使用的低頻段(介於470至790MHz間)特性,可使新技術的涵蓋範圍更廣、建築穿透力更強。 其二,透過無線傳輸連結大城市與鄉村地區,以建置鄉村地區之寬頻網路。 其三、用以智慧聯網(Machine-to-Machine Communications,或譯為物聯網)。 由於相關議題在歐盟仍屬初始階段,Ofcom決定先行發展國內和諧使用設備之標準,待歐盟確立標準後,再調整規管與之一致。 有意願經營資料庫之第三方,皆須向Ofcom申請其管理、或交由可信任機構管理之網站的清單,以供感知無線電設備選擇,導入資料庫供應商之競爭。Ofcom將與複數之資料庫供應商簽訂契約或管制協議;至於申請者的最低條件、契約內容與申請費用,仍待定義與諮詢 Ofcom預計於2013年正式使用該技術;此外,依據科技進展,亦考慮回收FM廣播頻段發展感知無線電。
歐盟統一專利制度可望於2014年實施在歷經超過三十年的討論後,歐洲議會於12月11日通過統一專利制度包裹草案。在統一專利制度下,省去申請生效的翻譯費用及程序,能夠節省最高八成的專利申請成本,可望增加歐盟的科技創新競爭力。 2011年在歐盟僅有6萬兩千個新專利申請被核准,遠少於美國同年的22萬4千個專利、中國的17萬2千個專利,其中一個主要原因是因為在歐盟申請專利的成本過高。目前申請歐盟專利除了透過各會員國專利局外,亦可以依據歐洲專利公約(European Patent Convention, EPC)向歐洲專利局(European Patent Office, EPO)申請,然核准後仍須向各會員國提交該國官方語言版本以生效,因此耗費大量程序及翻譯費用,平均每個專利需花費36,000歐元。 統一專利制度下,不論對於個人或公司發明人都能夠提供更便宜、更有效率的專利保護。統一專利制度包裹草案包含三個協議:統一專利制度、統一申請語言、統一專利法院。統一專利制度及統一申請語言建立適用於歐盟各國的專利制度,僅需以英文、德文或法文進行單一申請即可擁有25個會員國(除反對之義大利及西班牙外)自動專利保護,不需再另外申請生效,使得專利申請降至最低4,725歐元,大幅減少歐洲公司申請專利成本,增加歐洲企業競爭力,對於中小企業、研究機構幫助最大;另外,對於中小企業、非營利組織、自然人、大學及研究機構,若居住或主要營業處所位於歐盟內,以非統一申請語言提出申請案件通過後,會退還翻譯費用;針對中小企業也會降低專利維護費用。統一專利法院則能集中處理統一專利之爭端,預計設立於巴黎,並於倫敦及慕尼黑設立分院。 統一專利制度將在2014年1月1日生效,或是在13個會員國批准時生效(須含法國、德國及英國),歐盟專利局預計第一批適用新制的專利將於2014年4月被核准。
歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。