歐洲創新計分板(European Innovation Scoreboard, EIS)為針對歐盟成員國以及其他歐洲國家的研究與創新績效、創新體系等進行的評比報告,由歐盟執委會(European Commission, EC)每年發布,協助了解各國創新力態樣與市場競爭優勢。
EIS以綜合創新指數(Summary Innovation Index)作為整體評估標準,區分為四大類指標、10個創新構面,並細分為27個評估子標。四大類指標及相關架構如下:
2019年6月發布歐洲創新計分板報告,歐盟創新發展連續四年均有進步。報告將歐盟會員國創新表現分為四組,分別為:1.創新領導者:包含丹麥、芬蘭、挪威等國;2. 優秀創新者:包含奧地利、比利時、德國等;3.中等創新者:包含希臘、匈牙利、義大利等;最後一組4.適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞等。該報告亦個別在特定領域上進行排名,例如在創新研究體系領域,盧森堡和丹麥表現最好,友善創新環境則以丹麥及芬蘭為最優,企業投資由德國和芬蘭領先,智財領域應用上則以中等創新組的馬爾他居冠。
本文為「經濟部產業技術司科技專案成果」
日本國土交通省(下稱「國交省」)於2021年2月9日公布「基礎建設之數位轉型政策(インフラ分野のデジタル・トランスフォーメーション施策)」。此報告係國土交通省基礎設施DX推進本部(国土交通省インフラ分野のDX推進本部)於2021年1月所舉行第三次會議所彙整之政策方針。 針對基礎設施數位轉型之政策實施主要分為四個面向:第一部分強調透過行政程序數位化及網路化,藉以提升效率並加強管理效能,並且提供運用數位生活中各項服務,以增加生活之便利與安全。第二部分說明為實現安全與舒適之勞動環境,減少人工作業之負擔,未來欲活用AI與機器人,使施工作業與技術建設達到無人化,並透過數位化提高專業技術學習效率以培育相關人才。第三部分聚焦於調查、監督檢查領域,如公路、鐵路、河川及機場之檢修,利用資料分析與自動化機械提升日常管理及檢修效率。最後,為順利推行以上數位轉型政策,必須建構能支援數位化的社會。因此,未來除須結合智慧城市(スマートシティ)等數位創新政策,利用資料以具體化社會課題之解決方針外,亦須針對作為數位轉型基礎之3D資料進行環境整備,以利數位轉型之推動。
美國發明法(Leahy-Smith America Invents Act,AIA)第18條修正案之觀察美國國會於今年5月針對美國發明法(Leahy-Smith America Invents Act,AIA)第18條提出擴張性修法。美國發明法第18條係規範專利改革過渡期間涵蓋商業方法專利之複審程序(Transition Program for Cover Business Method Patents Review, CBM),並且定有落日條款,預計將在2020年9月16日失效。本次修正案研擬將落日條款刪除以外,將適用對象從原先適用於金融產品或服務(a financial product or service)之商業方法專利(Business Method Patents)修正為適用於企業、商品或服務(used in the practice, administration, or management of enterprise、product or service)之商業方法專利,此將擴張商業方法專利複審程序之適用範圍。 奇異電子(GE Co.)、3M(3M Co.)、禮來(Lilly & Co.)、施樂(Xerox Corp.)等多家產業界知名公司於今年(2013)9月19日發出聯合信函反對美國國會此次針對美國發明法第18條的擴張性修法。信中表示本次修法將意味著數據處理專利(Data Processing Patents)等尖端的癌症治療方法到汽車安全系統等都可能包含在內,可提起專利侵權的範圍將擴大至難以界定的程度,再者刪除落日條款,會造成諸多不確定性與風險阻礙科技創新的持續投入。 然而,產業界並非意見一致,諸如谷歌(Google Inc.)、臉書(Facebook Inc.)、沃爾瑪(Wal-Mart Stores Inc.)等知名公司則立場相左,早於今年7月即率先表示贊成,聲明此次修法提供創新者一個積極保護自身專利的具體手段。由此足見歐巴馬政府與立法者在專利法制改革中,必然要面對難以預測的產業效應和衝擊,從而增加其制度改革策略思考和制度設計的難度。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。