2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下:
以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。
本文為「經濟部產業技術司科技專案成果」
美國J. Cathell公司於2022年12月21日以《保護營業秘密法》(Defend Trade Secrets Act of 2016)、《喬治亞州營業秘密法》(The Georgia Trade Secrets Act)控訴前員工Martin侵害其營業秘密「設計社群媒體發文及服裝策畫計算公式」。 J. Cathell公司是知名引領潮流、設計與旅遊的網紅兼部落客Jess Cathell所成立,其個別社群媒體皆有上千、萬名之追蹤者。其所經營之J. Cathell公司透過Instagram(@j.cathell)與網站(www.jcathell.com)提供前往特定目的地旅遊而設計的服裝,亦融合特定風格與特殊活動,同時提供販售連結。另有經營Facebook(J. Cathell Facebook)、Pinterest(J. Cathell Pinterest)、Like To Know It(下簡稱LTK)(J. Cathell LTK)等社群媒體。該服裝與風格設計是由Jess Cathell針對其客群研析出專屬、非公開之計算公式(營業秘密)所得出之結果。 被告Martin自2020年9月起任職於J. Cathell公司、擔任Jess Cathell的助理。Jess Cathell主張其提供Martin專屬計算公式之使用權限,並投注大量成本教導如何運用計算公式詮釋服裝策畫結果、設計社群媒體發文內容。前述資訊對J. Cathell公司皆具有獨立之實際或潛在經濟價值、他人亦可因被揭露之資訊,或使用該資訊而獲利。 Jess Cathell主張僅有自己、Martin能接觸專屬計算公式,並運用該公式產出設計社群媒體發文及服裝策畫結果。Jess Cathell為了保密,不曾以紙本記錄留存專屬計算公式相關資訊;用於追蹤銷售與其他績效指標的系統,皆以帳號、密碼保護。而Martin知悉該密碼,且於Martin任職期間多有提醒前述資訊之秘密性,Martin針對這些資訊具有保密義務。 Jess Cathell於2022年4月左右,發現WEAR TO WANDER公司(下簡稱WTW公司)成立Instagram、Pinterest、Facebook、LTK等帳號與WTW公司網站,於前述社群媒體發文的格式及概念,與J. Cathell公司於社群媒體發布的內容幾乎相同,並於同年8月發現Martin是WTW公司的創立者。Jess Cathell主張因Martin、WTW公司不當使用其營業秘密「設計社群媒體發文及服裝策畫計算公式」,在短短11個月內,WTW公司的Instagram即獲得近9萬名追蹤者,造成J. Cathell公司之財務與競爭損害,遂於同年12月向法院提出營業秘密侵害訴訟。 本案為首件社群媒體經營產業相關之營業秘密訴訟案件,後續判定將值得關注。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
中研院開發「奈米質譜檢測技術」1小時知道是否罹癌「蛋白質體學」是醫學研究的新領域,透過對「蛋白質變異」的研究來瞭解疾病的機制,現在已經可以成功診斷出許多疾病。不過,因為血液中跟疾病有關的「標記蛋白質」,含量往往很低;傳統「酵素免疫法」( ELISA )的檢測流程總得進行個大半天,往往造成時間的浪費。 中央研究院發表獨步全球的「磁性奈米粒子」質譜驗血技術,只要使用小學生使用的磁鐵,就可以迅速「大海撈針」,從血液中吸出和SARS、癌症、中風等病症相關的標記蛋白質,可以在一小時內診斷病情。這項研究成果正在申請國內外專利,臨床實驗、認證後,民眾未來只要多花幾百塊錢,就能夠享受這項最新的奈米科技。不管胃癌、乳癌或大腸癌,只要 ELISA 能夠檢測的項目,這套技術都可以更有效率地完成。不過因為「質譜儀」價格昂貴,臨床運用又需相關認證,普及化可能還得再等一段時間。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
WiMAX頻譜開放 攪亂一池春水