新加坡個資保護法責任指南

  新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)的基本原則之一在於可歸責性(Accountability)之建立,原因在於個資保護的責任歸屬,是組織對個資的持有與控制所為的承諾與責任表示。因此,PDPA第11、12條之法遵責任,組織必須對所持有或控制的個資負責,並且需制定並實施資料保護政策、溝通並告知員工相關政策、及履行PDPA義務所必須施行之流程與作法。於組織責任而言,PDPA雖有強制性義務責任,但應忖量組織內部責任歸屬的措施,而非僅將責任落於遵守法律的程度,組織必須從合於法規的方法轉為基於責任歸屬的方法來管理個人資料。

  從而,該指南在政策、人員、流程等領域中透過資料生命週期的循環,確立組織責任歸屬。從落實良好的責任制始於組織領導力的概念出發,設定組織管理高層之職責與調性,繼而規劃處理個資及管理資料風險的方法。並由組織人員治理面向,確立溝通資訊與員工培訓知識與資源。除此之外,也在特定流程設置上,紀錄個人資料流動,了解如何收集、儲存、使用、揭露、歸檔或處理個人資料為流程的首要任務,繼而確認資料保護層面主要的差距與需要改進的領域。再將資料保護實踐於業務流程、系統、商品或服務。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 新加坡個資保護法責任指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8319&no=0&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
歐洲人權法院(ECtHR)認為土耳其政府封鎖網站之行為,有違歐洲人權公約言論自由規定

  歐洲人權法院(ECtHR)在去年(2012)12月作出一項因封鎖網路而侵害言論自由的判決。該判決認為土耳其政府封鎖整個Google網站的行為,已違反歐洲人權公約第10條關於言論自由之保障。   土耳其法院在2009年審理侮辱有土耳其國父之稱的凱末爾將軍案時,判決封鎖設在Google平台的某網站,但土耳其通訊主管機關(Telecommunications Directorate)向法院建議,因技術上問題,建議封鎖整個Google網域才能達到效果,此舉連帶影響本案上訴人架設於Google平台上的網站也一併遭致封鎖,上訴人在窮盡國內訴訟程序後,進而向歐洲人權法院提告。   歐洲人權法院認為,網路目前已經成為表達言論的一個重要工具與場域,根據歐洲人權公約第10條規定,立法限制言論自由必須明確,以便當事人能夠遵循。但土耳其法令(Law no. 5651)並無可封鎖整個網域之相關規定;此外,亦有證據顯示土耳其政府並未盡告知義務,且該網路平台Google亦無拒絕遵循當地國法令之情形;至於通訊主管機關建議法院封鎖整個Google網域行為,亦違反土耳其法令(Law no. 5651)之授權範圍。因此歐洲人權法院認為土耳其政府已經違反歐洲人權公約第10條規定。   根據歐洲安全與合作組織(Organization for Security and Co-operation in Europe)的調查指出,在2012年土耳其政府至少封鎖了3700個網站,包括YouTube、DailyMotion、Google等知名網站。   而總部設在倫敦的維護言論自由知名組織Article19(取名自世界人權宣言第19條言論自由保障而來)主任Agnes Callamard博士也指出,本案是網路言論自由的重大勝利,尤其是當前各國政府積極尋求各種網路管制手段時,更應注意立法限制言論自由必須具有明確的法源基礎且應有救濟管道,以落實歐洲人權公約保障言論自由之意義。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

歐盟金融監管機構共同建議強化現行之永續金融揭露規則

為促進綠色轉型並提高對投資人之保護,歐洲銀行監理機關(European Banking Authority, EBA)、歐洲保險與職業年金監理機關(European Insurance and Occupational Pensions Authority, EIOPA)及歐洲證券與市場監理機關(European Securities and Market Authority, ESMA)於2024年6月18日針對永續金融揭露規則(Sustainable Finance Disclosure Regulation),向歐盟執委會(European Commission)發布共同意見。 現行的永續金融揭露規則於2019年制定並於2021年生效,其目的在提高金融產品服務的 ESG 揭露透明度和標準化,透過要求金融市場參與者提供可靠且可比較的 ESG 資料,使投資者能夠做出更明智的投資決策,引導投資人重視環境與永續議題。現行的永續金融揭露規則係以「商品標籤」之方式揭露金融商品資訊,但共同意見中認為此標籤制度並未提供明確標準或門檻,使投資人無法充分了解為何特定商品具有永續性,導致漂綠(greenwashing)及相關投資風險。 因此,本次共同意見向執委會建議,執委會應建立投資人易於理解且具有客觀標準之金融商品類別,解決上述資訊落差疑慮。共同意見建議,金融機構可採用「永續(sustainable)」與「轉型(transition)」兩項金融商品類別。以下簡介共同意見就兩項金融商品類別提供之建議: 一、永續類別 永續類別係指金融商品投資於已達到環境或社會永續門檻之經濟活動或資產。共同意見提及,執委會或可考慮將永續類別再拆分為環境永續類別與社會永續類別;但若拆分兩項類別,可能必須注意目前環境永續與社會永續兩項類別得參考之指標發展程度不一,未來在訂定門檻時如何確認相關指標需進一步討論。 二、轉型類別 轉型類別係指金融商品投資於尚未達到環境或社會永續門檻,但未來將逐步提高其永續性以達到永續類別門檻之經濟活動或資產。共同意見建議,執委會於訂定轉型類別之門檻時,應參考經濟活動分類標準之關鍵績效指標、轉型計畫、商品減碳路徑及減緩主要不利影響之措施等因素。 目前執委會正評估利害關係人意見及永續金融揭露規則實施經驗,作為改善歐盟永續金融制度之依據,因此共同意見亦建議,執委會應先進行消費者調查,再著手後續規則修訂,方能達到制度優化之成果,保障投資人權益及永續發展。

歐洲議會呼籲尊重網路人權

  歐洲議會於2009年3月26日,以大多數支持Lambrinidis報告中關於網路上個人自由保護之投票結果,反對法國政府和著作權行業提出的修正案。歐洲議會的態度是「保障所有公民接近使用網路就如同保障所有公民接受教育」,而且「政府或私人組織不能以處罰之方式拒給這種接近使用的權利」。歐洲議會議員要求會員國政府需體認到網路是一個有效增加公民權利義務之特殊機會,就這方面而言,使用網路及網路內容是一個關鍵要素。   這份報告被歐洲議會議員所採用,得以認識到提供安全措施來保護網路使用者(特別是孩童)之必要性,由於使用者可能會因使用網路,而暴露在成為罪犯或恐怖份子的犯罪工具的風險中。報告中提出方案對抗網路犯罪,但同時也要求在安全及網路使用者基本權利保障中尋求平衡點。 此報告否定法國所提之修正案,歐洲議會又再度否決由法國努力推動「網路侵權三振法案」(three strikes file-sharing law)。歐洲議會認為對於所有網路使用者的監測活動及對於侵權者之處罰有違比例原則。歐洲議會亦公開支持「網路權利憲章」(Internet Bill of Rights)以及推動「隱私權設計」(privacy by design)宗旨。

TOP