歐洲專利局《2023年戰略計畫》

  歐洲專利局(The European Patent Office, EPO)於2019年6月27日發布《2023年戰略計畫》(Strategic Plan 2023, SP2023),協助歐盟應對網路化和全球化的世界挑戰。該戰略計畫之重點為實現專利局五大策略目標,分別為:員工參與(staff engagement)、資通訊現代化(modernisation)、品質(quality)、歐洲專利網路(European patent network)和永續性(sustainability)。

  該五大策略目標分述如下:

  1. 建立一個參與性、知識性及協作性的組織:幫助員工發揮其專業領域,以及重視識別、招募和留才之方法。
  2. 進行EPO 資通訊系統的簡化與現代化:包含支持端到端的電子專利授權流程、對現有技術數據庫進一步投資、並關注亞洲相關文獻與標準。
  3. 效率化提供高品質流程與服務:確保EPO的專利審查或其他作業流程及服務維持高標準,例如建立辦公室品質管理系統(QMS)和「早期確定」計畫(Early Certainty),加速專利核准程序。
  4. 建立具有全球影響力的歐洲專利制度和網路:加強歐盟成員國與歐盟以外國家專利局之合作,並定期檢視歐洲專利局對其他國家的財務與營運支援,在加強國際參與度與成本效益之間達到平衡。
  5. 確保長期發展與永續:歐洲專利局擬建立觀察站(Observatory)作為一提供利害關係人進行討論和分析的平台。該平台將為減少碳排放、降低能源消耗、降低紙張消耗以及減少使用塑膠等訂定明確長期目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐洲專利局《2023年戰略計畫》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8320&no=55&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
何謂「循環經濟」?

  循環經濟(Circular Economy)不僅是資源回收或廢棄物利用,循環經濟強調的核心概念是創造資源利用的最大效益,有別於傳統經濟模式在資源利用上「開採、製造、使用、丟棄」的線性歷程,循環經濟加入了減少廢棄物產生、資源重覆與有效利用的概念,讓資源利用與產品的生成不再是有去無回的單向線性歷程。   循環經濟的概念能夠套用到所有產品的生命歷程當中,自產品設計、生產、物流、銷售、使用、回收,到投入新的產品生命歷程,以環型的資源利用歷程,加入各種資源再利用的方式,並盡可能減少真正廢棄物的生成。與此相關聯的包含新興科技如大數據、物聯網之應用,到創新商業模式的生成,都可以是循環經濟的一部分。   循環經濟所揭示的概念,是讓產業發展與環境保護能攜手同行,創造資源利用的最大效益。在歐盟「展望2020計畫」(Horizon 2020)當中,也同樣把循環經濟列為計畫的重要領域之一,循環經濟時代來臨所揭櫫的不僅僅是在資源回收、或是幾種廢棄物再利用的技術,而是對經濟體系當中資源運用歷程的重新形塑,與新興科技及商業模式創新均密不可分。

安全至上 監看有理?-論工作場所電子郵件監看法制爭議

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

我國生物與遺傳資源權利歸屬及管理思維初探

TOP