歐洲專利局(The European Patent Office, EPO)於2019年6月27日發布《2023年戰略計畫》(Strategic Plan 2023, SP2023),協助歐盟應對網路化和全球化的世界挑戰。該戰略計畫之重點為實現專利局五大策略目標,分別為:員工參與(staff engagement)、資通訊現代化(modernisation)、品質(quality)、歐洲專利網路(European patent network)和永續性(sustainability)。
該五大策略目標分述如下:
本文為「經濟部產業技術司科技專案成果」
微軟在美國政府索要用戶郵件的一起官司中獲得勝訴。美國政府第二巡迴上訴法院裁決,如果資料是儲存在美國境外伺服器,則不為美國聯邦政府的令狀效力所及。 這件訴訟案源於2013年的一起涉外毒品案件中,紐約區法院發布了一項搜查令,要求微軟提供公司一名用戶的郵件和相關訊息。然而因為有些資料是存放在微軟公司在愛爾蘭的伺服器,因此微軟爭辯說郵件本身是儲存在愛爾蘭的,因此不應受到美國政府令狀效力所及。2014年聯邦地方法院再次要求微軟提供郵件內容——但微軟上訴到了聯邦第二巡迴法院。 美國聯邦第二巡迴法院在判決中,認定基於《儲存通訊記錄法》(Stored Communications Act:SCA/下稱SCA)規定美國政府得以令狀要求連結網路使用者資料的規定並不適用於境外。法院所持理由為: 1. SCA規定搜索票/扣押票之核發應符合美國聯邦刑事訴訟法之相關規定,而美國聯邦刑事訴訟法第41條即規定搜索票/扣押票應由搜索/扣押標的物所在地之法院核發並交由該地或國內他地執法人員執行。 2. 法院曾於2010年之MORRISON ET AL. v. NATIONAL AUSTRALIA BANK LTD. ET AL.案判決理由中指明,如國會立法時認為某法規可能或必須有域外效力,應以明文定之,而SCA條文中並無任何規定寫明該法可於境外適用之。 3. SCA在第2703條所使用之搜索票/扣押票(warrant)一字,源自美國憲法增修條文第四條,即規定美國政府對其國內人民為搜索扣押時應以搜索票/扣押票(warrant)為之,且SCA更刻意以不同條款及不同強度區分搜索票/扣押票(warrant)與傳票(Subpoena),立法者之用意顯然是希望能以前者提供使用者更高度的隱私保護。 這是美國首例企業對獲取境外資料的政府搜查令提起上訴的案件,審判結果影響著美國法律界對於執法機關是否能就存放在世界上其他國家的美國用戶資料,進行合法調查。
日本規制改革推進會議促進農業數據利用日本政府規制改革推進會議係由內閣府發布政令所成立,具跨部會協調性質、推動日本法規調適之委員會,規制改革推進會議於今(2020)年7月2日向安倍晉三首相報告,從去年10月起歷經8個月審議規制改革項目的審議結果後,最新版「規制改革實施計畫」於7月17日通過閣議決定。規制改革實施計畫中關於農林水產領域「促進智慧農業普及」項目,除了促進無人機、自動行走機普及、農作物栽培設施設立而調和相關規定外,「農業數據利活用」項目首見於規制改革實施計畫,實施項目包括以下四項: 利用農林水產省補助金(見註1)導入曳引機、農業機器人、無人機、IoT機器等智慧農業機械時,應符合以下要件:根據農業領域AI數據相關契約指引,農民可以使用其所提供給系統服務業者所保管之數據,該契約條文應包含於數據契約中。 農林水產省與農機廠商合作建構OPEN API數據環境,透過使用農機時所取得位置座標、作業紀錄等數據,未來農民可以將此數據使用於非出自該農機廠商的其他軟體。 農林水產省於2022年度預算開始,利用補助金導入農機廠商的農機時,須符合上述第2點OPEN API要求。 農林水產省將發出以下明確通知:因鳥獸害、緊急救難、搜索犯人、農業道路塌陷等應配合公家機關等具高度公共性事務,以及為保護人的生命身體財產等必要之情況,農機廠商如事前已徵得農民的概括性同意,可提供從農民方所取得之數據予有關當局。 日本政府為加速智慧農業落地普及,藉由調和農林水產省補助金規定促進農業數據流通運用,保護農民數據使用權利,且將農業數據擴散利用於公共事務,凸顯日本政府對於農業數據保護與運用的重視,值得我國做為借鏡。 註1:補助金不限於「有關補助金等預算執行適正化相關法律[昭和 30 年法律第 179 號]」(補助金等に係る予算の執行の適正化に関する法律[昭和 30 年法律第 179 号])的補助金,包括其他交付金、委託費。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
澳洲擴大對中小企業之政府採購競爭機會聯邦採購規則(Commonwealth Procurement Rules)為澳洲財政部(Australia Government Department Of Finance)依公共治理、績效及課責法(Public Governance, Performance and Accountability Act 2013)授權所訂定之採購規範。澳洲財政部於2024年發布新修正之聯邦採購規則,並於同年7月1日生效。 新修正之聯邦採購規則除維持現行架構及核心精神外,另增訂聯邦供應商行為準則、擴大經濟效益評估、促進性別平等等措施,同時也擴大對中小企業之支援與協助。 為確保中小企業參與政府標案之公平競爭,新修正之聯邦採購規則要求澳洲政府在評估採購案時應適當提供中小企業競爭機會,並以符合最佳性價比之原則考量下列事項: 一、 向具有競爭力之中小企業進行採購之效益; 二、 中小企業參與競標之障礙,如投標之資金成本; 三、 中小企業之能力及對地區市場之貢獻; 四、 增加潛在供應商數量以最大化競爭所產生之效益,包含在合適之情況下,將大型專案拆分為數項小型專案。 此外,新修正之聯邦採購規則要求聯邦機構提高對中小企業採購之比例。依新修正之聯邦採購規則第5部分,超過澳幣10億元之採購契約,採購總金額中至少25%應係向中小企業採購,較修正前提高5%;超過澳幣2,000萬元之採購契約,採購總金額中則至少應有40%係向中小企業採購,較修正前提高5%。 本次修正是考量中小企業對於澳洲經濟有所貢獻,因此提高中小企業之採購比例,預計修正後亦可讓更多中小企業獲得採購機會。