2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。
當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。
本文為「經濟部產業技術司科技專案成果」
基於專利動向分析之專利策略規劃 科技法律研究所 法律研究員 徐維佑 2014年12月23日 壹、專利布局策略目的 無論在企業針對新產品開發、或學研機構研究新興技術時,對於研究方向的判斷,皆應善加利用其他競爭公司、學研機構專利動向最新資訊。以各國專利資料庫為基礎,蒐集其他公司、機構的研究領域,或者與研發成果相關的專利等資料而成的專利地圖(patent map),可構築更完整的智財戰略。 欲將研究成果商業化時,販售排他性產品對於競爭非常重要。因此阻止其他公司製造仿冒品、類似品,甚至競爭品,或者防禦其他公司之侵權告訴,皆必須盡早制定對策,亦即必須掌握該技術領域的智財資訊,才能讓研發活動順利推展。 貳、各國政府公開之專利動向分析 一、英國國家專利藍圖分析報告 英國政府於2014年中,依續公告8大重要技術之專利藍圖分析報告[1],認為專利資訊可提供創新活動高價值之分析觀點,因此該國智慧財產局資訊團隊,透過專利申請資訊分析出全球性專利藍圖,幫助其國內企業與民眾瞭解此8大重要技術專利資訊,並將分析結果納入資金挹注之考量基礎。 專利藍圖分析報告之資料,來源為2013年至2014年間全球專利資料庫中專利公開(Published)之資料,以及諮詢英國智財局各專業技術領域之專利審查員之結果。而專利藍圖分析報告之分析內容,包括專利涵蓋範圍、專利申請排名領先群、專利優先權期間、專利合作開發申請圖、專利技術分析等。 二、韓國R&D專利技術動向調查 韓國R&D專利技術動向調查制度自2005年開始,每年度由與研究發展相關的各部會針對其提出之研發工作,提供研發計畫執行階段中,所研發之技術是否已有先前技術,或是與研發技術類似之專利發展情況等資訊,即以該研發領域之技術不被其它國家競爭對手搶先獲得專利權的目標作為研究人員之研究方向。 而專利技術動向調查之研發課題則由韓國專利廳下韓國智慧財產策略院主管之「e專利國[2]」負責調查,提供專利分析結果的綜合報告,提供各部會與各領域別的專利動向、方向與及各種分析報告,內容包含有政府R&D專利技術動向調查報告、國家專利策略藍圖報告、以及專利分析與相關生產報告等。並根據以上報告提供技術領域別研發計畫方向、挑選出將來商業化運用價值較高之專利。 參、代結論 專利動向分析的資訊為一種判斷的依據,儘管由分析報告所顯示的技術範圍中,判斷要進行哪一種研究時,需要的是研究者的經驗與知識,但專利動向分析有助於篩選出可行的研究範圍,尤其在投入國家資源補助科研計畫時,資源更應有效應用於可行的技術領域,而非早已佈滿專利地雷處。 目前產業研發過程缺乏完善專利布局分析。實際生產產品之企業為避免侵權故意,常忽略申請前檢索工作;雖研究前或研究中調查之專利動向分析,並不能保證研究成果的可專利性,然而該工作對於國家、企業之研究發展實屬必要。透過如英國國家專利藍圖分析報告、韓國R&D專利技術動向調查,由國家公開技術領域共通性專利分析報告,對於企業後續進行技術專利布局,或者研究機構擬定研究發展方向,皆會有莫大的助益,並節省相當的時間與人力成本,值得我國參考。 [1] UK Intellectual Property Office, Eight great technologies: the patent landscapes (2014), https://www.gov.uk/government/publications/eight-great-technologies-the-patent-landscapes (last visited: 2014/10/01) [2] 韓國e專利國網頁, http://www.patentmap.or.kr/patentmap/front/common.do?method=main(最後瀏覽日:2014/10/01)。
何謂「工業4.0」?所謂工業4.0(Industrie 4.0)乃係將產品用最先進的資訊和通訊技術緊密結合。其發展背後的原動力是快速增長的經濟和社會的數位化。在德國,它不斷地在改變未來產品的生產及加工方式:自蒸汽機、生產線、電子和電腦技術之後,現在確認了「智慧工廠」(Smart Factories)乃是第四次工業革命。 德國「工業4.0」一詞源於2011年德國教育與研究部(BMBF)在其高科技策略(Hightech-Strategie)下的研發計畫。而如何落實工業4.0,則可從德國科學技術院(Deutsche Akademie der Technikwissenschaften, acatech) 與德國高科技策略之研究聯盟顧問委員會(Forschungsunion, Wirtschaft und Wissenschaft begleiten die Hightech-Strategie)共同提出之「工業4.0:實踐建議報告書」 (Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0)窺見整體計畫。 它的技術基礎是資訊科技、數位化的網路系統,藉由該系統,可以實現超強的自行組織運作的生產流程:人、機器、設備、物流和產品在工業4.0中,得以在同一個平台上相互溝通協作。不同企業間的生產及運送過程可以更聰明地以資訊科技技術相互地溝通,更為有效和彈性地生產。 如此一來將有助於產生智慧型新創價值的供應鏈,其囊括產品生命週期的各階段-從開發、生產、應用和維修一直到回收產品階段。藉此,一方面相關的服務可從客戶對產品想法一直到產品的回收都包括在內。因此,企業能夠更容易地根據個別客戶的要求生產定制產品。客製化的產品生產和維修可能會成為新的標準。另一方面,雖然是生產個性化商品但生產成本仍可以降低。藉由新創價值供應鏈相關企業的相互串聯,使產品不再只是各個流程得以優化,而係整體的創新價值鍊的整體最適化。如果所有資訊都能即時提供,一個公司可以儘早快速回應的某些原材料的短缺,生產過程可以跨企業地調整控制,使其更節省原料和能源。總體而言,生產效率能夠提高,加強企業的競爭力和提高生產彈性。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
微軟與中興通訊(ZTE)簽定Android和Chrome專利授權微軟(Microsoft)與大陸地區的中興通訊(ZTE)簽定Android和Chrome裝置的專利授權協議,雙方財務明細未揭露。 該協議,給予中興通訊授權範圍涵蓋微軟專利組合中可供用於執行Google的Android 和 Chrome 作業系統的廣泛內容,包括智慧型手機、平板裝置、電腦及其他裝置設備等。 除中興通訊加入外,其他包含三星(Samsung)、宏達電(HTC)及宏碁(Acer),都已經與微軟簽定專利授權協議,上周以代工製造為主的鴻海科技集團亦簽定類似的協議,並支付權利金,取得微軟專利組合。 微軟智慧財產權事業群全球副總裁暨副法務長 Horacio Gutierrez在微軟部落格公開表示,微軟的Android和 Chrome授權協議,主要是要幫助裝置供應商避免未來遭受到與微軟訴訟事件。到目前為止,幾乎已經與所有全球最大供應Android智慧型手機的供應商及製造商達成授權協議。Horacio Gutierrez另補充“ 事實上,在微軟協議下已涵蓋了80%以上在美國銷售的Android智慧型手機及大多數在全球銷售的Android手機“。 目前尚有兩家企業仍未達成協議,分別為全球第三大智慧型手機供應商大陸公司華為(Huawei),及Google旗下的Motorola Mobility。