智慧財產權盡職調查(Intellectual Property Due Diligence, IP DD),又稱智慧財產權稽核(IP Audits)。所謂盡職調查(Due Diligence, DD)係指:即將進入投資或購買交易前,投資者或其委託人透過事實證據所進行與投資或購買相關的評估。評估內容包含公司結構、財務狀況、業務、稅務、人力資源等,亦涵蓋有形資產與無形資產。其主要目的在於釐清該投資或購買是否存在潛在的法律風險。隨智慧財產權的概念愈來愈成熟,智慧財產權盡職調查也益發重要。智慧財產權盡職調查的內容常會包含:財產權(如:註冊地域、質押或保全情形)、授權或轉授權限制、申請之時期、優先權效期、爭議或訴訟(如:是否存在專利權無效之風險)。智慧財產權盡職調查的資料蒐集方式除了調閱智慧財產權申請記錄(file wrapper)、保密契約、授權文件,常見調查方式亦包含訪談重要員工和審閱發明人的僱傭契約。
假若沒有善盡智慧財產權盡職調查,很可能會後續引發潛藏的風險,諸如:估值錯誤、交易可能會因為未提前排除繁冗細節而遲延進而影響投資人意願、可能會導致必須重新談判,最嚴重可能必須放棄整個交易。未善盡智慧財產權盡職調查著名的實例是蘋果(Apple)與唯冠的iPad商標爭議。2006年蘋果策畫平板電腦並希望以iPad為名,台灣的唯冠集團早在2000年起於多國註冊iPad電腦商標。2009年蘋果透過英國子公司以3.5萬英鎊收購唯冠的iPad全球商標,並於2010年推出iPad。因為蘋果的智慧財產權盡職調查疏漏,而未發現iPad於中國大陸之商標權屬於深圳唯冠公司而非台灣唯冠,所以不能進入中國大陸市場。最後,蘋果與深圳唯冠以6,000萬美元鉅額和解。從iPad案可窺知智慧財產權盡職調查之重要性。
本文為「經濟部產業技術司科技專案成果」
台灣、美國與日本因為歐盟所徵收進口機頂盒、平板顯示器以及多功能列印三項科技產品的高進口關稅,於8月19日正式向世界貿易組織(WTO)爭端解決小組(Panel)提出成立一個爭端解決小組的請求。 WTO會員國於1996年針對特定的高科技產品簽署禁止課稅的「資訊科技協議」(WTO Information Technology Agreement,簡稱ITA),歐盟也同意依WTO關稅時程表取消「資訊科技協定」中所約定產品的關稅。然而,歐盟目前對進口的機頂盒課徵13.9%、平板顯示器14%以及對多功能列印機6%的高進口關稅。美國的貿易談判代表Susan Schwab表示,歐盟對所承諾事項相悖的行為,不僅違反1994年關稅及貿易總協定第2條,並有礙資訊科技產業的技術創新發展。該不公平的進口關稅,事實上也影響相關業者與消費者的權益。 依照複邊簽定而在次年生效的ITA協定,該協定下產品應為零關稅。但歐盟自前年起,以稅則附註等法規,將部分平面顯示器、具硬碟的機上盒及多功能事務機等新技術科技產品,以功能增強或有新功能為由,歸類為家電產品,排除適用同一協定。WTO爭端解決機構(The WTO dispute settlement body,簡稱DSB)將會於 8 月29日召開會議時對本爭端案件進行討論。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
英國因應自動駕駛車輛上路,提出新保險責任制度英國政府為達成於2021年使完全無須人為操控的自動駕駛車輛可在英國公路上行駛之目標,提出新保險責任制度。透過自動駕駛和電動車輛法案的提出,將為自動駕駛車輛可合法上路行駛鋪路,從而帶動自動駕駛車輛產業發展。整體而言,一旦此立法正式通過,除了代表英國政府正式樹立自動駕駛車輛的保險框架里程碑外,也象徵英國朝向2021年的目標又更邁進一步。