瑞士諾華藥廠針對數間印度學名藥廠之ANDA申請程序,提起專利侵權訴訟

  瑞士諾華藥廠成立於1996年,為全球前十大藥廠之一,其首創新藥Entresto,係作用於心臟神經內分泌系統,以對抗心力衰竭症狀,其在美國也取得相關專利(US8101659、US8796331、US8877938和US9388134),專利效期大致落在2023~2027年間。藥品上市後統計至2019年6月,Entresto的全球收入已達約7.78億美元。

  印度學名藥廠Macleods、Alembic、Natco公司於2019年9月向美國食品藥品監督管理局(下簡稱FDA)提交Entresto學名藥簡易新藥上市申請(下簡稱ANDA),諾華於2019年9月11日接獲通知後,即於2019年10月24日,針對上述申請ANDA之印度學名藥廠提起專利侵權訴訟,試圖阻止該些印度學名藥廠仿製Entresto。

  依照美國規定,當學名藥廠提出ANDA申請時,若專利權人在45天內提出專利訴訟,則會限制美國FDA不得於30個月內核准該ANDA申請。因此,在實務上ANDA從申請到上市,需花費約三年時間,使得學名藥廠往往會選擇在原廠藥物專利尚未到期前,提早申請藥品查驗;而原廠也通常會積極於45天內發起專利訴訟,已鞏固其專利期間之市場地位。

  我國西藥專利連結制度業於2019年8月20日正式上路,建議我國相關生醫藥廠商應了解相關制度規範、與國外規定之差異,並提早納入企業內部之智財管理與智財策略規劃。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 瑞士諾華藥廠針對數間印度學名藥廠之ANDA申請程序,提起專利侵權訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8330&no=64&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
韓國通過個人資料保護法修法並對其執行命令指引提出修正草案

2023年9月27日,韓國個人資訊保護委員會(Personal Information Protection Commission, PIPC)就《個人資料保護法》(Personal Information Protection Act, PIPA)執行命令之指引修正(Enforcement Decree Amendment Guide)草案展開諮詢,諮詢將持續至2023年11月30日為止。韓國於2023年3月修正個人資料保護法,該修正於2023年9月15日生效,而指引修正之目的即是協助各界能夠遵循新修法後的義務,因此該指引草案詳細說明了修法後有關資料蒐集、獲得當事人同意之條件、使用和提供存取要求等內容。最終版的指引預計將於2023年12月發布。 韓國個人資料保護法於2023年的修訂範圍廣泛,特別是關於跨領域和行業個人資料處理標準等,使得公私部門中的資料處理人員和資料隱私人員必須深入瞭解此些變化,以確保能遵守最新的法律規定。 修訂後的韓國個人資料保護法強調實際保障資料主體的權利,並調整網路和實體業務之間不一致的資料處理標準,藉以迎接全面的數位轉型。此次韓國個人資料保護法修正重點如下: 1.強調確保資料主體的權利,即使在緊急情況下蒐集或處理個人資料時仍須提供足夠的保護措施。 2.釐清並調整網路和實體業務的不明確或不一致的法規,例如資料外洩的報告和通知時限、蒐集和利用14歲以下兒童個人資料需要獲得法定監護人同意的要求,以及對違規行為實施行政處罰的標準等。 3.要求處理大量個人資料的公共機構需強化保護措施,包括應分析和檢查存取記錄、指定負責每個系統的管理員,以及通知使用公共系統未經授權存取個人資料的事件等。 4.跨境資料傳輸條件調整為可傳輸至保護程度與韓國相當的國家或地區;並調整處罰金額,防止處罰金額過高超出責任範圍。。 韓國PIPC主委表示,此次對韓國個人資料保護法的修訂,反映了對資料主體權利更強大保護的需求。同時,考慮到此次修法的變動較大,建議各領域從業人員皆須仔細確認相關法遵內容,PIPC將針對不同領域需求來量身定制說明活動,積極提高大眾對修訂後的《PIPA》內容的理解程度,以確保韓國個人資料保護法修正後的實施。

歐盟對製藥產業是否違反市場競爭展開調查

  製藥產業的競爭情勢越來越劇烈,藥商間為了求取最大的利益,在以研發新藥為主的原開發藥廠及以複製專利到期的藥品為核心的學名藥廠之間,衍生出新的競合模式,特別是針對專利侵權訴訟予以和解。過去幾年,美國FTC與FDC花了相當多的時間調查製藥界此一實務是否會扭曲市場競爭,因而違反競爭法的精神,美國國會更在2003年底通過法律,對此類競爭予以規範。繼美國之後,歐盟也在2008年1月中,就有關原開發藥廠與學名藥間的競合作關係,向境內的製藥產業發出產業調查,這是歐盟首次就製藥產業內的專利訴訟和解協議展開調查。   歐盟此次調查最主要的目的是為了深入瞭解製藥產業的商業實務,調查內容包括:(1)在專利的策略方面,藥廠對於專利的取得與執行法律保護,是為了要保護創新發明,還是為了阻擋或限制創新藥以及(或)學名藥競爭的目的;(2)藥商之間訴訟纏訟的情形如何;(3)關於專利訴訟和解協議的簽署情形。雖然歐盟此項調查並不一定意味其即可找出原開發藥廠與學名藥廠違反競爭的證據,但歐盟此次的調查舉動或許意味,歐盟已從美國經驗中開始懷疑製藥產業內原開發藥廠與學名藥廠間不尋常的合作模式,對於是否有違反競爭之情事存疑。

韓國K-Startup競賽(K-Startup Grand Challenge 2020)提供全球新創企業進入亞洲市場的重要管道

  對於欲前往韓國發掘商機並在亞洲擴展業務的全球企業家和新創企業而言,韓國政府的所提供的新創計畫(K-Startup Grand Challenge)是一個相當開放且友善的平台,該計畫由中小企業和新興企業部(MSS)和國家IT產業促進局(NIPA)主導,於2020年5月起接受全球新創企業申請。   該計畫為亞洲地區首次全額由政府資助的計畫,旨在支持希望進入韓國並進一步開拓國際市場的外國新創企業,其申請基本條件如下: 7年內成立的全球新創公司。 必須有明確的長期發展方向,並以在韓國定居為目標。 具有雛形的產品或服務,且處於初始階段的新創公司。   通過申請的企業將有為期3個月的資助計劃,並可選定的團隊成員至韓國進行交流,向該產業專家學習,更提供財務支持以及進入市場發展等多元化的機會,重要的是,透過交流學習可促進新創企業,有機會與韓國大型企業集團接觸,獲取與該大型企業合作的可能。   韓國為使其成為亞洲新創產業中心,積極資助、指導許多的新創企業,且陸續成立相關競賽與計畫,提供新創公司發展的平台,例如,國土交通省舉辦”智能挑戰賽”,鼓勵企業採用創新技術解決該城市的需求與提高生活便利性(如:智能人行道、自駕車…等);以及韓國創業發展研究所(KISED)透過資助與教育為新創者提供更多的發展機會。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP