Google近期宣布更新廣告政策,以遵守將於2020年1月1日生效之「加州消費者隱私保護法」(California Consumer Privacy Act, CCPA),要求符合該法規之事業體(不論是否於加州開設實體據點):年度總收入超過2,500萬美金、年度收入50%以上源自於出售加州居民之個人資料、每年收到或分享總計超過5萬筆加州居民、家庭或裝置之個人資料、若公司之母公司或子公司符合CCPA所定條件者,允許消費者得選擇並行使退出其個人資料銷售權利。
Google表示使用其網站廣告工具與應用程式將能屏蔽個人化廣告,個人化廣告,係依消費者瀏覽紀錄、興趣及過去行為投放予消費者,廣告商有時花費高達10倍價錢置入,惟互聯網相關企業先前所進行之遊說未能使該法規排除個人化廣告,從使最受歡迎及利潤豐厚之線上廣告面臨行銷危機。
依Google新合規條款,透過Google工具(如AdSense和Ad Manager)銷售廣告之網站及應用程式目前無需進行重大更改,廣告商亦可選擇停止所有來自加州網址之消費者或阻擋全球使用個人資料之個人化廣告銷售,該合規條款除於線上發布外,並已通知予各廣告商。
Google表示,當觸發「限制數據處理」時,廣告將僅基於一般數據,例如用戶所在城市位置或廣告所在頁面主題等;此外,Google亦不會在受限制模式下記錄個人資料而用於未來之廣告行銷。
日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。
桃莉羊誕生十年 複製技術之醫療運用距收成階段仍遙遠十年前的 7 月 5 日 ,全世界第一隻複製的哺乳類動物桃莉羊在英國誕生。 複製羊成功的案例,吸引了如潮水般的錢潮,流入探索利用這項新技術的領域,諸如有關治療癌症、心臟病、阿茲海默症和其他嚴重疾病的研究。科學家應用在姚莉身上的技術是屬於「細胞核轉置技術」( SCNT ),簡言之,是把卵子的細胞核取出,然後把身體細胞的細胞核放入這個卵子中。在這個新建構的卵子中,只有來自身體細胞的染色體,而沒有原卵子的染色體,新卵子中僅含有提供身體細胞者的基因組,所以稱之為「複製」。科學複製有很大的潛在風險,代價又高,但它對醫學研究仍有很大的貢獻,其中最引人注意的,就是可取得胚胎幹細胞。 幹細胞是一群尚未完全分化的細胞,同時具有分裂增殖成另一個與本身完全相同的細胞,以及分化成為多種特定功能的體細胞兩種特性,在生命體由胚胎發育到成熟個體的過程中,扮演最關鍵性的角色。研究人員相信未來可以利用幹細胞,修復或是更換受傷或是病變的器官中的細胞或組織,特別是利用有患者自己基因的幹細胞組織移植,可以避免免疫系統的排斥現象。 當年科學家複製桃莉羊時所抱持之野心不小,然而這十年來,科學家們並沒有能夠達成以幹細胞治療人類疾病的目標,雖然因複製 技術本身具有高度爭議性,許多國家已立法予以規制,然卻依舊無法避免如 前首爾大學教授黃禹錫偽造幹細胞研究成果的醜聞發生,這項醜聞使原本即因幹細胞研究和倫理會產生衝突而不易獲得公私部門經費支持的研究工作,更為雪上加霜。 英國胚胎學者指出,回顧過去醫學研究史上的新發現,不論是試管嬰兒或是其他的技術,從第一次到最後技術完全成熟階段,都需要花很長的時間一步步完成,未來可能還需要五十年的時間,複製技術對醫學的貢獻才可能到達豐收階段。
國有研發設施開放近用之法制規範研析-以美日韓規定為核心 美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。