Google近期宣布更新廣告政策,以遵守將於2020年1月1日生效之「加州消費者隱私保護法」(California Consumer Privacy Act, CCPA),要求符合該法規之事業體(不論是否於加州開設實體據點):年度總收入超過2,500萬美金、年度收入50%以上源自於出售加州居民之個人資料、每年收到或分享總計超過5萬筆加州居民、家庭或裝置之個人資料、若公司之母公司或子公司符合CCPA所定條件者,允許消費者得選擇並行使退出其個人資料銷售權利。
Google表示使用其網站廣告工具與應用程式將能屏蔽個人化廣告,個人化廣告,係依消費者瀏覽紀錄、興趣及過去行為投放予消費者,廣告商有時花費高達10倍價錢置入,惟互聯網相關企業先前所進行之遊說未能使該法規排除個人化廣告,從使最受歡迎及利潤豐厚之線上廣告面臨行銷危機。
依Google新合規條款,透過Google工具(如AdSense和Ad Manager)銷售廣告之網站及應用程式目前無需進行重大更改,廣告商亦可選擇停止所有來自加州網址之消費者或阻擋全球使用個人資料之個人化廣告銷售,該合規條款除於線上發布外,並已通知予各廣告商。
Google表示,當觸發「限制數據處理」時,廣告將僅基於一般數據,例如用戶所在城市位置或廣告所在頁面主題等;此外,Google亦不會在受限制模式下記錄個人資料而用於未來之廣告行銷。
美國公布實施零信任架構相關資安實務指引 資訊工業策進會科技法律研究所 2022年09月10日 美國國家標準技術研究院(National Institute of Standards and Technology, NIST)所管轄的國家網路安全卓越中心(National Cybersecurity Center of Excellence, NCCoE),於2022年8月前公布「NIST SP 1800-35實施零信任架構相關資安實務指引」(NIST Cybersecurity Practice Guide SP 1800-35, Implementing a Zero Trust Architecture)系列文件初稿共四份[1] ,並公開徵求意見。 壹、發布背景 此系列指引文件主要係回應美國白宮於2021年5月12日發布「改善國家資安行政命令」(Executive Oder on Improving the Nation’s Cybersecurity) [2]當中,要求聯邦政府採用現代化網路安全措施(Modernizing Federal Government Cybersecurity),邁向零信任架構(advance toward Zero Trust Architecture)的安全防護機制,以強化美國網路安全。 有鑑於5G網路、雲端服務、行動設備等科技快速發展,生活型態因疫情推動遠距工作、遠距醫療等趨勢,透過各類連線設備隨時隨地近用企業系統或資源進行遠端作業,皆使得傳統的網路安全邊界逐漸模糊,難以進行邊界防護,導致駭客可透過身分權限存取之監控缺失,對企業進行攻擊行動。為此NIST早於2020年8月已公布「SP 800-207零信任架構」(Zero Trust Architecture, ZTA)標準文件[3] ,協助企業基於風險評估建立和維護近用權限,如請求者的身分和角色、請求近用資源的設備狀況和憑證,以及所近用資源之敏感性等,避免企業資源被不當近用。 貳、內容摘要 考量企業於實施ZTA可能面臨相關挑戰,包含ZTA部署需要整合多種不同技術和確認技術差距以構建完整的ZTA架構;擔心ZTA可能會對環境運行或終端客戶體驗產生負面影響;整個組織對ZTA 缺乏共識,無法衡量組織的ZTA成熟度,難確定哪種ZTA方法最適合業務,並制定實施計畫等,NCCoE與合作者共同提出解決方案,以「NIST SP 800-207零信任架構」中的概念與原則,於2022年8月9日前發布實施零信任架構之實務指引系列文件初稿共四份,包含: 一、NIST SP 1800-35A:執行摘要(初稿)(NIST SP 1800-35A: Executive Summary (Preliminary Draft)) 主要針對資安技術長(chief information security and technology officers)等業務決策者所編寫,可使用該指引來瞭解企業於實施ZTA所可能遭遇挑戰與解決方案,實施ZTA所能帶來優點等。 二、NIST SP 1800-35B:方法、架構和安全特性(初稿)(NIST SP 1800-35B: Approach, Architecture, and Security Characteristics (Preliminary Draft)) 主要針對關注如何識別、理解、評估和降低風險的專案經理和中層管理決策者所編寫,闡述風險分析、安全/隱私控制對應業務流程方法(mappings)的設計理念與評估內容。 三、NIST SP 1800-35C:如何操作指引(初稿)(NIST SP 1800-35C: How-To Guides (Preliminary Draft)) 主要針對於現場部署安全工具的IT 專業人員所編寫,指導和說明特定資安產品的安裝、配置和整合,提供具體的技術實施細節,可全部或部分應用指引中所揭示的例示內容。 四、NIST SP 1800-35D:功能演示(初稿)(NIST SP 1800-35D: Functional Demonstrations (Preliminary Draft)) 此份指引主要在闡述商業應用技術如何被整合與使用以建構ZTA架構,展示使用案例情境的實施結果。 參、評估分析 美國自總統發布行政命令,要求聯邦機構以導入ZTA為主要目標,並發布系列指引文件,透過常見的實施零信任架構案例說明,消除零信任設計的複雜性,協助組織運用商用技術來建立和實施可互操作、基於開放標準的零信任架構,未來可預見數位身分將成為安全新核心。 此外,NIST於2022年5月發布資安白皮書-規劃零信任架構:聯邦管理員指引[4] ,描繪NIST風險管理框架(Risk Management Framework, RMF)逐步融合零信任架構的過程,幫助聯邦系統管理員和操作員在設計和實施零信任架構時使用RMF。 我國企業若有與美國地區業務往來者,或欲降低遠端應用的安全風險者,宜參考以上標準文件與實務指引,以建立、推動和落實零信任架構,降低攻擊者在環境中橫向移動和提升權限的能力,與保護組織重要資源。 [1] Implementing a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture (last visited Aug. 22, 2022). [2] Executive Order on Improving the Nation’s Cybersecurity, THE WHITE HOUSE, https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity (last visited Aug. 22, 2022). [3] SP 800-207- Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/publications/detail/sp/800-207/final (last visited Aug. 22, 2022). [4] NIST Releases Cybersecurity White Paper: Planning for a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/News/2022/planning-for-a-zero-trust-architecture-white-paper (last visited Aug. 22, 2022).
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
澳洲證券投資委員會發布監理沙盒架構澳洲證券投資委員會(Australian Securities and Investments Commission, ASIC) 於2016年12月15日發布第257號法規指導(Regulatory Guide 257,RG 257)-在未持有AFS或信用執照的狀態下測試fintech產品與服務(Testing fintech products and services without holding an AFS or credit licence)。RG 257並包含澳洲的監理沙盒架構。重要內容如下: 1.有別於其他國家的監理沙盒需要申請方能適用,透過法規以及ASIC澳洲已經提供一些鬆綁機制,換句話說並不需要事先申請就可以取得監管沙盒鬆綁。例如非現金支付產品,包含儲值卡,以及某些國外交易服務。 2.ASIC的fintech 執照豁免見諸於ASIC Corporations (Concept Validation Licensing Exemption) Instrument 2016/1175 以及ASIC Credit (Concept Validation Licensing Exemption) Instrument 2016/1176。 3.ASIC也可個別提供客製化的執照豁免以促進產品或服務測試,個別豁免就比較接近其他國家的監管沙盒架構。 因此基本上,只要符合法定以及上述兩個instruments的規定,就可以自動取得監管沙盒的鬆綁,而無需另外申請,唯需「通知」ASIC,並提供相關資料。監理沙盒的適用期間為十二個月。但是如果不符法定以及Instrument 2016/1175、Instrument 2016/1176的規定,也可以另外向ASIC申請客製化的豁免。 目前可適用Instrument 2016/1175的金融服務包含: •掛牌的澳洲證券; •簡易管理的投資架構; •存款產品; •某些一般的保險商品;以及 •「授權存款取用機構(authorised deposit-taking institutions,ADIs)」發行的支付產品。 唯須注意的是,Instrument 2016/1176允許有限的信用協助,但是不得提供借貸。另外,使用監理沙盒的fintech企業最多只能有100個零售客戶,以有效控制風險。
日本公布「如何計算森林吸收的二氧化碳量」因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法 每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法 因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法 因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數 此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。