美國加州通過美國第一部規範藥品專利侵權和解協議中遲延給付條款之州法,推定其具有反競爭性

  美國加州議會於2019年9月12日通過《加州法案AB 824,商業:保持人們對負擔得起的藥物之近用(California AB 824 - Business: preserving access to affordable drugs)》(下稱AB 824法案),其主要規範藥品專利侵權和解協議中之「遲延給付(pay for delay)」條款,推定其具有反競爭性,為美國第一部規範製藥公司之間簽訂遲延給付條款之州法。

  於AB 824法案中,其規範對象為學名藥與生物相似性藥物之藥證申請人,統稱為「非參照藥物申請者(Nonreference drug filer)」。其規定若用來解決專利侵權之協議為「非參照藥物申請者」從主張專利被侵害的公司處接受任何有價值之物,且同意於一段期間內限制或放棄學名藥或生物相似性藥品的研究、開發、製造、上市、銷售,則該協議推定具有反競爭效果。惟例外若能證明「非參照藥物申請者」所獲得之價值僅對其他商品或服務是公平合理的補償、協議直接產生了競爭優勢,協議的競爭優勢大於協議的反競爭效果,則反競爭性之推定可舉上述事由為證而推翻。每次違規行為可處以高達2000萬美元或「非參照藥物申請者」收到的價值三倍的罰款,以數額高者為準。

  AB 824法案減輕政府舉證責任的負擔,將主張和解協議不具反競爭效果之舉證責任轉移至和解協議當事人身上,且因此種推定,當事人必須向政府揭露更多和解協議之資訊,而增加協議之透明度。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國加州通過美國第一部規範藥品專利侵權和解協議中遲延給付條款之州法,推定其具有反競爭性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8351&no=55&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
歐盟通過《外國補貼規則》並於2023年1月正式生效

  2023年1月12日,歐盟《外國補貼規則》(Foreign Subsidies Regulation, FSR)正式生效。其旨為歐盟欲有效打擊因領有外國補貼而具不公平競爭優勢之企業,以保護歐盟市場公平競爭。   2021年5月5日,歐盟執委會(European Commission)提出《外國補貼規則》草案以防範上述企業在歐盟市場進行危害競爭之行為。該規則於2022年11月分別經歐洲議會(European Parliament)與歐盟理事會(European Council)通過後,同年12月23日刊載於歐盟官方公報,並於2023年1月正式生效。   歐盟執委會於2023年2月6日公布《外國補貼規則》執行細則草案,詳細規範踐行企業併購及參與公共採購程序通知義務所應提交之資訊、調查期程及受調查企業之權利等。根據新規,執委會可調查非歐盟國家之企業財務補助(financial contribution)情形,就調查結果決定是否限制其在歐盟市場從事企業併購、參與公共採購以及其他可能影響市場競爭之經濟活動。   若併購一方的歐盟營業額達5億歐元(€500 million),且外國注資達5,000萬歐元(€50 million),相關企業須向歐盟執委會報告。另外,執委會有權解除未履行通知義務但已執行之交易。而公共採購標案方面,標案金額預估達2.5億歐元(€250 million),且參與投標之企業受外國補貼達400萬歐元(€4 million),該企業即應通知執委會,執委會得禁止接受補貼之企業或違規者得標。   歐盟執委會將考量利害關係人意見回饋後預計自2023年7月12日起實施,而部分通知義務將自同年10月12日起實施。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國加州公共事業委員會提出自動駕駛車輛試點計畫

  加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。   第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。   參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。   此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

澳洲網路安全專員啟動「社群媒體年齡限制專區」保障未滿16歲青少年的數位安全

澳洲網路安全專員(eSafety Commissioner)於2025年10月啟動「社群媒體年齡限制專區」(Social Media Age Restrictions Hub),以落實2024年11月通過的線上安全法(Online Safety Act 2021)修正案。該次修正納入「社群媒體最低年齡」(Social Media Minimum Age, SMMA)框架之規定,以全面保障澳洲未滿16 歲的兒童及青少年。為落實SMMA,透過延緩取得帳號方式,而非全面禁止使用,以減輕青少年因登入帳號面臨的壓力及風險,從而維護其身心健康與福祉。 2025年12月10日受年齡限制的社群媒體平台必須採取合理措施,防止16歲以下的青少年建立或保留帳戶。eSafety 針對合理措施細節發布SMMA監管指引,並強調平台的合理措施不得僅依賴使用者自我申報年齡或出生日期,亦即要求業者透過嚴格的年齡驗證機制,限制特定年齡層的使用權限。eSafety調查顯示,儘管存在年齡限制,96%的10至15歲兒少使用過社群媒體,此現象凸顯強化業者責任的重要性。 為能更完整保護兒少隱私,線上安全法修正案另一重點在於授權澳洲資訊專員辦公室(Office of the Australian Information Commissioner)制定兒童線上隱私準則(Children's Online Privacy Code),確立以兒童最佳利益為核心的隱私保護標準,並規範線上服務應如何遵循澳洲隱私原則,該準則預計於2026年12月生效。此外,eSafety亦提供針對家長與青少年準備指南(Get-ready guide),協助其適應數位時代下的兒少保護新規定。

TOP