美國加州於2019年9月通過AB-5法案(Assembly Bill No. 5),預計於2020年1月正式施行,本法目的在於強化零工經濟下非典型勞務提供者(如平台外送員)的權益保護,於加州現行勞動法令之基礎上,增訂關於各類勞務提供者之特別規定。
依本法主要規範,係推定替雇主(hirer)提供服務的工作者為僱傭契約關係下之僱員(employee),就最低工資、失業保險、勞災、醫療保險等面向,業者應對這些工作者提供等同受僱人之相關權益及保障;若要被例外認定為非成立僱傭關係之獨立承包商,則必須滿足不受公司於工作方面的控制指示、從事與公司通常業務範圍無關之業務、以及有實質接案自由等三要件,並要求業者應以上列標準判定其勞務提供者為僱員或獨立承包商,同時需於例外認定為獨立承包商時提出相關證明。
同時,本法亦考量到施行後其效力對既有營業形態之衝擊,分別採取以下措施:
本文為「經濟部產業技術司科技專案成果」
雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。 雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。 雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
美國FDA於20250617宣布將試行「局長國家優先審查券」COVID-19疫情後美國開始積極處理藥品供應鏈脆弱性,為提振本土製造與審查效率,美國食品及藥物管理局(Food and Drug Administration, FDA)於2025年6月17日宣布將試辦「局長國家優先審查券」(Commissioner’s National Priority Voucher, CNPV)。該計畫依據《聯邦食品、藥品與化妝品法》(The Federal Food, Drug, and Cosmetic Act, FFDCA)與《公共衛生服務法案》(Public Health Service Act, PHSA)授權。CNPV將不同審查分組集中處理,並結合資料預先提交機制,力求將一般10-12個月的審查流程壓縮至1-2個月,試辦期為一年,並與現行優先審查及優先審查券(Priority Voucher, PRV)機制獨立並行。 內容要點: 1.遴選資格:符合任一「國家優先」標準之廠商 因應公衛危機:如廣效疫苗開發 帶來潛在的創新療法:超越突破性療法認定成效的新型療法 解決未滿足公共衛生需求:如罕病或缺乏療效標準治療之疾病 提升美國供應鏈韌性:如將藥品研發、臨床、生產遷至美國 提高可負擔性:將美國藥價降至最惠國藥價,或減少下游醫療費用 2.使用與要求: 適用階段:可於申請臨床試驗或申請藥證等階段啟用,亦可先領「未指名券」保留資格。 文件要求:需提前60天提交完整藥品化學製造與管制(Chemistry, Manufacturing, and Controls, CMC)與仿單預審,如遇重大缺件FDA得延長審查期限。 有效性:2年內使用,逾期失效;不可轉讓,但併購案中可沿用。 CNPV透過團隊同日決策,有望在FDA人力縮減背景下縮短審查時程。並強調國家利益,可能優先惠及具戰略價值及在美投資的大型藥廠;對我國優化藥品審查流程與吸引製造投資等目標,亦具重要參考價值。
看韓國如何吹起下一波韓流—韓國著作權認證制度簡介 OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。