美國加州於2019年9月通過AB-5法案(Assembly Bill No. 5),預計於2020年1月正式施行,本法目的在於強化零工經濟下非典型勞務提供者(如平台外送員)的權益保護,於加州現行勞動法令之基礎上,增訂關於各類勞務提供者之特別規定。
依本法主要規範,係推定替雇主(hirer)提供服務的工作者為僱傭契約關係下之僱員(employee),就最低工資、失業保險、勞災、醫療保險等面向,業者應對這些工作者提供等同受僱人之相關權益及保障;若要被例外認定為非成立僱傭關係之獨立承包商,則必須滿足不受公司於工作方面的控制指示、從事與公司通常業務範圍無關之業務、以及有實質接案自由等三要件,並要求業者應以上列標準判定其勞務提供者為僱員或獨立承包商,同時需於例外認定為獨立承包商時提出相關證明。
同時,本法亦考量到施行後其效力對既有營業形態之衝擊,分別採取以下措施:
本文為「經濟部產業技術司科技專案成果」
歐盟於2024年4月26日通過重型車輛二氧化碳排放性能標準(Regulation (EU)2019/1242)修正案,加速交通運輸部門的脫碳進程,以實現2050年淨零排放目標。修法重點如下: (1)擴大適用範圍:除了現有的卡車外,亦納入市區公車、長途巴士(7.5噸以上)、拖車等車型,如垃圾車等特種車輛也將從2035年起納入管制。而歐盟執委會將於2027年評估是否將5噸以下小型貨車也納入規範。 (2)明確減排目標:要重型車輛的二氧化碳排放量在2030年、2035年和2040年分別較2019年減少45%、65%和90%。求2030年起,90%的新售市區公車必須為零排放車輛,並在2035年達到100%零排放。 (3)技術中立原則:允許製造商選擇電動化、氫燃料電池或氫內燃機等不同技術路線來達成減排目標。 (4)豁免及彈性條款:針對礦業、林業和農業用車,以及軍用、緊急救災和醫療用途車輛等特殊用途車輛,或年產量低於100輛的小型製造商,新法將不強制納管。且為確保產業公正轉型,歐盟也提供相關培訓和資金援助,協助產業轉型和勞工技能提升。 歐盟執委會將於2027年評估這項規範的實施成效,並考慮納入更多車型、制定全生命週期碳排放計算方法,以及評估可再生燃料在交通運輸部門脫碳進程中的作用。
歐盟提出智慧醫院防禦網路攻擊建議歐盟網路與資訊安全局於2016年11月(ENISA)提出醫院導入智慧聯網技術因應資訊安全之研究建議,此研究說明智慧醫院之ICT應用乃以風險評估為基礎,聚焦於相關威脅與弱點、分析網路攻擊情節,同時建立使用準則供醫院遵守。由於遠端病患照護之需求,將使醫院轉型,運用智慧解決機制之際,仍須考量安全防護問題,且醫院可能成為下一階段網路攻擊之目標,醫院導入智慧聯元件的同時,將增加攻擊媒介使醫院面對網路攻擊更加脆弱,因此,報告建議如下: 1.醫療照護機構應提供特定資訊安全防護,要求智慧聯網元件符合最佳安全措施。 2.智慧醫院應確認醫院內之物件及其如何進行網路連結,並根據所得資料採取相應措施。 3.設備製造商應將安全防護納入現有資安系統,並在設計系統與服務之初邀請健康照護機構參與。 在我國部分,2016年9月行政院生技產業策略諮議委員會議中即提到,強調將建立智慧健康生活創新服務模式,提供民眾必要健康資訊及更友善支持環境,同時結合ICT與精密機械及材料,發展智慧健康服務的模式。2016年11月,行政院推動「生醫產業創新推動方案」,藉由調適法規等方式統整醫療體系與運用ICT技術及異業整合,其中在智慧聯網應用下之資訊安全防護議題實屬重要。
解析生技製藥研發成果涉及智慧財產保護之新課題 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」