美國加州於2019年9月通過AB-5法案(Assembly Bill No. 5),預計於2020年1月正式施行,本法目的在於強化零工經濟下非典型勞務提供者(如平台外送員)的權益保護,於加州現行勞動法令之基礎上,增訂關於各類勞務提供者之特別規定。
依本法主要規範,係推定替雇主(hirer)提供服務的工作者為僱傭契約關係下之僱員(employee),就最低工資、失業保險、勞災、醫療保險等面向,業者應對這些工作者提供等同受僱人之相關權益及保障;若要被例外認定為非成立僱傭關係之獨立承包商,則必須滿足不受公司於工作方面的控制指示、從事與公司通常業務範圍無關之業務、以及有實質接案自由等三要件,並要求業者應以上列標準判定其勞務提供者為僱員或獨立承包商,同時需於例外認定為獨立承包商時提出相關證明。
同時,本法亦考量到施行後其效力對既有營業形態之衝擊,分別採取以下措施:
本文為「經濟部產業技術司科技專案成果」
「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。 日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。 在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。
美國對於聯網環境中「關鍵基礎設施」之資訊安全議題展開行動面對境外網路安全的風險,美國歐巴馬總統於2013年2月12日,正式簽署「改善關鍵基礎設施之網路安全」行政命令(Executive Order 13636–Improving Critical Infrastructure Cyber security),據該行政命令第二款,將「關鍵基礎設施」定義為,「對於美國至關重要,而當其無法運作或遭受損害時,將削弱國家安全、經濟穩定、公共健康或安全之有形或虛擬系統或資產」,遂採取相對廣義之解釋。該行政命令第七款,亦指示美國商務部「國家標準技術研究所」(National Institute of Standard and Technology, NIST),將研議ㄧ個提升關鍵基礎設施資通訊安全之架構(Framework to Improve Critical Infrastructure Cybersecurity),將美國聯邦憲法所保障的企業商業機密、個人隱私權和公民自由等法益納入考量。 針對關鍵基礎設施引發重要之法制議題,美國副司法部長Mr. James M. Cole表示,由於關鍵基礎設施影響所及者,乃人民在法律下的權益,公部門政府將在該項議題上與私部門共同合作(partnership),且未來將研議通過立法途徑(legislation),將隱私權和公民權保護(the incorporation of privacy and civil liberties safeguards)納入關鍵基礎設施資通訊安全法制之全盤考量,相關趨勢殊值注意。
法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
何謂美國專利審查之「Track One程序」?美國專利審查中之所謂「Track One程序」,是指美國在2011年所通過的〈美國發明法〉( Leahy-Smith American Invention Act, AIA)中建立的一套快速審查專利的審查程序。 〈美國發明法〉第11條(h)項中要求,申請人繳交優先審查費用(Prioritized Examination Fee)後,美國專利審查主管機關,美國專利商標局(United States Patent and Trademark Office, USPTO)應提供優先審查服務。因此在Track One程序中,專利申請人僅需要付出4800美元的優先審查費,就可以獲得美國專利商標局的優先審查服務。 在此之前,美國專利商標局也曾經推出過類似的快速審查程序,亦即「加速審查」(Accelerated Examination, AE)程序,但在該加速審查程序中,申請人必須要自行執行對既有技術的檢索,並且提供輔助文件來解釋其請求項在既有技術下之可專利性。而相比之下,申請人在Track One程序中,僅需要負擔4800美金就可以與加速審查程序中相同,在12月內完成審查,且不需要負擔自行檢索技術的義務。也因此在Track One程序推出之後,加速審查程序的申請案件數量也受到影響,日前美國專利商標局即曾經徵詢公眾意見,評估是否仍需保留加速審查之程序。