IMD世界人才評比

  瑞士洛桑管理學院(International Institute for Management Development, IMD)於2019年11月18日發布2019 年世界人才評比報告(The IMD World Talent Ranking 2019 results)。IMD作為全球最著名商學院之一,其所屬之世界競爭力研究中心(IMD World Competitiveness Center, WCC)透過收集數據以及分析相關政策結果,推進對世界競爭力的認知,包含每年出版年度世界競爭力排名(World Competitiveness Rankings)、世界數位競爭力報告(World Digital Competitiveness Ranking),和世界人才評比報告。

  2019 年世界人才評比報告以「人才投資與發展」、「人才吸引力」和「人才整備度」(Readiness)為三大評比指標,評比63個經濟體。「人才投資與發展」衡量國家提供給人力之資源,「人才吸引力」評估吸引本地和外國人才的程度,「人才整備度」則評估人才技術及競爭品質。三大指標下再區分有32個細項,包含公共教育支出、師生比、在職訓練、女性勞動力、學徒制度、員工獎酬及紅利、個人所得稅率、職場環境健康等。

  2019年之人才評比結果,前5名均為歐洲國家,依序為瑞士、丹麥、瑞典、奧地利及盧森堡。我國在全球排名20,亞洲排名第3,僅次新加坡(10)與香港(15),勝過排名分別為35和33的日韓兩國,為歷年來排名最佳。細項中,我國較為優勢的部分包括國際學生能力評鑑(PISA)排名第2、理工科畢業生比例全球第3、衛生健康環境全球第6等。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ IMD世界人才評比, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8365&no=55&tp=5 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
FCC指定九家業者負責管理閒置頻譜資料庫

  美國聯邦通訊委員會(Federal Communications Commission,FCC)於2008年11月公布法規命令,開放閒置無線頻譜之使用。閒置頻譜緣起於美國無線電視訊號,對於鄉村或偏遠人口較少之地區並無覆蓋,這些地區之無線電視頻譜處於閒置未用狀態。FCC因應無線通訊對頻譜之需求,在以拍賣釋出新頻譜的同時,也由增進既有頻譜的效率著手。   FCC於此法規命令中公布初步的技術規範,包含使用地理資料庫以及感知無線電技術作為利用閒置頻譜之要件。之後,FCC於2009年11月公告接受業者遞交計畫書,審查是否能成為資料庫管理者之資格。   2010年9月FCC再度公布新的法規命令,取消感知無線電技術作為必要條件之要求,並調整技術規範,也預告將選擇民間業者來進行地理資料庫之管理與建置。   2011年01月26日,FCC正式公告九家業者,包括Comsearch、 Frequency Finder、Google、KB Enterprises LLC and LS Telcom、 Key Bridge Global LLC、 Neustar、Spectrum Bridge、 Telcordia Technologies、 WSdb LLC.。這九家業者將必須針對2010年所發佈之新規則提出補充資料,並與FCC工程技術辦公室(Office of Engineering and Technology ,OET)配合,舉行一系列的研討與測試實驗,確立最後的技術標準與測試資料庫運作的穩定度。   FCC亦表示,資料庫管理者必須同意,他們將不會從事任何歧視性及反競爭行為,亦不可有危及用戶隱私之行為。   在FCC指定地理資料庫的管理者後,美國開放閒置頻譜使用的前置準備也可說是完成,未來等業者完成測試,相關利用頻譜的設備上市之後,可望為無線通訊市場帶來更多低成本的選擇。

Flyknit專利訴訟戰持續擴大,Nike指控Puma侵害Flyknit系列產品之發明專利

  Nike成立於1971年,以運動用品起家,曾於2013年登上美國雜誌《Fast Company》「最具創新力的公司」排名位列第一。Nike在2012年推出Flyknit系列產品,主打一體成型的針織鞋面,Nike表示Flyknit技術是經過多年的研究、設計與開發,除以接面不明顯的方式來形成鞋面,其所使用的針織材料還可在鞋面的不同區域產生不同的紋理,並提供運動員所需要的輕盈、支撐、透氣、靈活等特性。此外,Nike也申請了有關Flyknit技術的發明專利以及利用Flyknit技術生產鞋面的設計專利。Flyknit不但在運動鞋業掀起新的流行趨勢,也開啟了新的訴訟戰場。   2012年,adidas晚Nike幾個月也發表了編織鞋款Primeknit,Nike旋即對adidas提起侵害發明專利訴訟,訴訟進展至2017年11月底,adidas向美國聯邦上訴法院提出上訴並主張Flyknit應屬於常規紡織工藝,不應給予Nike發明專利,目前尚待訴訟結果。   2015年,Nike又對Skechers的編織運動鞋款提起侵害設計專利訴訟, Skechers則以高端針織設計聞名的Missoni產品為證據,要求美國專利審理暨訴願委員會(Patent Trial and Appeal Board,簡稱PTAB)審查 Nike設計專利的有效性,最後PTAB認為有部分Nike的設計專利是無效的,至2017年,Skechers持續向PTAB挑戰Nike有關Flyknit鞋面之設計專利,目前PTAB仍在審理進行中。   Nike的Flyknit專利訴訟戰持續擴大規模,今(2018)年5月3日Nike指控Puma的產品IGNITE Proknit、IGNITE Speed Netfit、Mostro Bubble Knit、Jamming,在2008~2016年間侵害了Nike有關Flyknit技術之7件專利,並於美國麻塞諸塞州聯邦地方法院提起專利侵權訴訟,Puma則回應表示其未侵犯任何Nike的專利,計劃將繼續生產其產品。

英國上訴法院法官對軟體專利之必要性表示懷疑

  英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。   軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP