內閣官房副長官於2019年12月18日召集國土交通省、警察廳、經濟產業省、防衛省等相關主管機關,召開第9次「小型無人機相關府省廳聯絡會議」(小型無人機に関する関係府省庁連絡会議),並決議由內閣於2020年向國會提交《小型無人機於重要設施周邊地區上空飛行禁止法》(重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律,以下簡稱「小型無人機等飛行禁止法」)修正案,將重要國際機場及其周邊地區列為小型無人機的永久禁航區。
《小型無人機等飛行禁止法》之目的係禁止小型無人機於國家重要設施上空飛行,以防患於未然,並維護國政中樞機能和良好國際關係,以及確保公共安全。依該法第2條、第9條第1項之規定,小型無人機之禁航區域包含國會議事堂、內閣總理大臣官邸、其他國家重要設施等、外國領事館等、國防相關設施和核能電廠,以及設施周邊經指定之地區。
而在機場部分,為預防危險並確保大會能順利準備及營運,日本已透過《世界盃橄欖球賽特別措施法》(ラグビーW杯特措法)及《東京奧運暨帕運特別措施法》(東京五輪・パラリンピック特措法),將國土交通大臣指定之機場及其周圍300米地區增列為小型無人機禁航區,但僅為大會期間的暫時性措施。內閣考量小型無人機之飛行可能會影響機場功能運行,甚至對經濟帶來重大不良影響,欲透過《小型無人機等飛行禁止法》修正案,將該暫時性措施改為永久措施。
本文為「經濟部產業技術司科技專案成果」
2014年12月22日,中國大陸食品安全法修訂草案二審稿增加關於食品貯存和運輸、食用農產品市場流通、基因改造食品標識(中國大陸用語為轉基因食品標籤)等方面之內容。二審稿規定,生產經營基改食品皆應按照規定進行標識,未按規定進行標識的,沒收違法所得和生產工具、設備等物品,最高可處貨值金額五倍以上十倍以下罰款,情節嚴重者責令停產停業,直至吊銷許可證。對於基因改造標識,中國大陸已於《農業轉基因生物安全管理條例》有規定,此次二審稿為保障消費者的知情權,增加加重食品安全違法行為的法律責任,採取多種手段嚴懲,並希望以法律形式將其確定。 我國食品安全衛生管理法於2014年12月10日修法中,對於基改食品標識部分並未修訂,僅在第22條及24條規定了要標識「食品之容器或外包裝,應以中文及通用符號,明顯標示下列事項…(包含基因改造食品原料)」以及「食品添加物之容器或外包裝,應以中文及通用符號,明顯標示下列事項中…(含基因改造食品添加物之原料)」。然而,我國與中國大陸此次修法雖皆有明訂,但明訂方式、標準等並未描述,又如美國佛蒙特州有意立法通過之基改食品標識法也在今年2015年1月因有爭議舉行公聽會,使該法令生效前恐有中止之情事。目前看來,不同國家有不同的基因改造食品標識政策,但國際間仍致力建立一套統一的規範。
歐盟執委會關切奈米科技對於食品安全之影響近年來,奈米科技已多方使用於食品製造業中,舉凡食品的殺菌、保存或食材的包裝等,皆為適例。然而,隨著奈米科技的影響層面逐漸擴大,無論係其功用的研發或風險的防範,仍有進一步研究之必要。 歐盟執委會(European Commission)根據2007年3月其新興健康風險科學委員會(SCENIHR)所提出之報告,認為應加強認識奈米科技對於食品安全之影響,遂邀請歐洲食品安全局(EFSA)就該領域提出科學看法。至2008年10月14日,歐洲食品安全局科學委員會即公布「奈米科技對於食品和飼料所引起之潛在風險(Potential Risks Arising from Nanoscience and Nanotechnology on Food and Feed Safety)」草擬意見,其內容係說明奈米科技應用於食品製造業之多種樣態、人為奈米材料(engineered nano materials,ENM)於食品或飼料製造過程中所產生之作用,以及判斷現有之風險評估方式能否合於需要。 該草擬意見歸結數項結論如下: (1) 因人為奈米材料之體積微小且具有高表面積,於人體吸收時較一般物質更容易產生反應。 (2) 關於化學物質於奈米尺寸下將產生何種變化,迄今無法做出令人滿意之科學論斷,因此就安全性與相關數據的累積,仍需要個別檢視。 (3) 建議應針對風險評估一事設置國際基準,且該基準可同時適用於人為奈米材料及一般化學物質。 (4) 食品與飼料中含有人為奈米材料者,於風險評估時應包括該材料特性之敘述,並進行毒理研究分析,使資訊蒐集更為完備。 由於人為奈米材料不確定之事項甚多,因此需要更豐富的資料加以釐清;而該草擬意見除提供歐盟執委會評估現行法制、研究可行措施外,亦向公眾廣徵回應;民眾可於2008年12月1日前,提供歐洲食品安全局相關科學證據或意見,待該局進行彙整後,將與歐盟會員國商討後續事宜。
歐盟2014個人資料保護日,倡議資料可攜權及個資規範革新歐盟將2014年1月28日定為「2014個人資料保護日」(Data Protection Day 2014),倡議推動個人資料修法及規範革新,主要係位因應數位化時代,個人資料權利保護越形重要,並且為了強化保護線上隱私權利,歐盟執委會首於2012年1月25日所提出個人資料保護指令的修正草案─「保護個人關於個人資料處理及此等資料自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL(General Data Protection Regulation));該修正草案於2013年6月進入歐洲議會、理事會及執委會的三方協商,同年10月21日歐洲議會公民、司法與內政委員會(Committee on Civil Liberties, Justice and Home Affairs)審議通過,若進程順利預計將於2014年獲得通過,並於2016年生效施行。 歐盟「2014個人資料保護日」會議中,特別提到此次修法,係為歐盟跨時代的個人資料保護規範革新工作,具有特別重要意義,並且倡議應對於資料可攜權(Right to Data Portability),明文法制化加以落實保障,包括加強資料當事人控制及近取個人資料的權利,資料當事人更容易近取(aceess)個人資料(第14、15條);資料當事人有資料可攜的權利(第18條),當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料(第18條(1)),且更容易自不同服務提供者間移轉個人資料。 國際間對於「資料可攜」議題,正反意見均陳,並未達成共識。歐盟執委會提出個人資料保護指令的修正草案第18條,倡議將「資料可攜性」明文法制化,並要求資料蒐集、處理與利用者對以電子化方法持有的個人資料,需使用結構性、通用的格式,以便利並確保後續個人資料可攜性。此修正草案一提出,隨即引發國際間各重要國家的熱烈探討:有反對者認為,此舉無異將形成未來國際間貿易障礙;有贊成者從確保使用者權益觀點,認為未來智慧聯網(IoT)環境下,資料可攜性是不可避免的趨勢,賦予資料當事人法律權利,有助於個人資料的保護。各重要國家對歐盟修正草案立場及意見,值得加以探究,以觀察未來法制發展趨勢。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。