美國衛生及公共服務部(Department of Health and Human Services, 下稱HHS)轄下的公民權利辦公室(Office for Civil Right, 下稱OCR)在2019年11月27日,正式對Sentara醫療機構處以217萬美元行政罰,主因該機構違反《健康保險可攜與責任法》(Health Insurance Portability and Accountability Act, 下稱HIPAA)的醫療個資外洩通知義務。
HIPAA是美國有關醫療個資管理的主要規範,依據HIPAA第164.400條以下「違反通知規則」(Breach Notification Rule)規定,當超過500位病患的「受保護健康資訊」(Protected Health Information, 下稱PHI)遭受不當使用或被外洩時,除應通知受害人外,還必須立即告知HHS以及在當地知名媒體發布新聞。而OCR主要負責檢查受規範機構,是否確實執行HIPAA隱私、安全和違反通知規則。
而在2017年4月,HHS收到指控Sentara將含有病患姓名、帳號、就診日期等涉及PHI的帳單發送到錯誤地址,造成557名病患個資外洩。Sentara卻認為該帳單內容未含有病患病歷、治療資訊或其他診斷紀錄,且僅有8人被影響,並非HIPAA應進行個資外洩通知義務之範疇,故不依規定程序通報HHS。不過OCR認為依HIPAA第160.103條規定,PHI包含病史、保險資訊、就醫紀錄(含日期)、身心健康狀態等可識別個人之健康資訊。因此認為Sentara確實違反個資外洩通知義務,予以罰款並命檢討改善。
Sentara醫療機構服務範圍橫跨美國維吉尼亞州(Virginia)和北卡羅來納州(North Carolina),共有12家急性照護醫院、10家護理中心和3家照護機構,為美國最具知名的大型非營利醫療機構之一。這次重罰也告誡國內醫療機構當發生敏感性醫療個資外洩時應從嚴判斷,以避免民眾對醫療照護單位失去信任,確保國內醫療機構體系應恪遵HIPAA規範。
由於近年來勒索軟體對國際金融帶來重大影響,七大工業國組織G7成立網路專家小組CEG(Cyber Expert Group),並於2022年10月13日訂定了「金融機關因應勒索軟體危脅之基礎要點」(Fundamental Elements of Ransomware Resilience for the Financial Sector),本份要點是為因應勒索軟體所帶來之危脅,提供金融機關高標準之因應對策,並期望結合G7全體成員國已施行之政策辦法、業界指南以及最佳之實踐成果,建立處置應變之基礎,加強國際金融的韌性。該份要點內容著重於民營之金融機關(private sector financial entities),或關鍵之第三方提供商(critical third party providers),因其本身有遵守反洗錢和反恐怖主義之融資義務,但也可依要點訂定之原意,在減少自身受到勒索軟體之損害上,或在處置與應變上有更多的彈性。而日本金融廳於2022年10月21日公布該份要點之官方翻譯版本,要點所提列之重點如下: 1.網路安全策略與框架(Cybersecurity Strategy and Framework): 將因應勒索軟體威脅之措施,列入金融機關整體的網路安全策略與框架之中。 2.治理(Governance): 支付贖金本身可能於法不容許,也可能違背國家政策或業界基準,金融機關須在事件發生前,檢視相關法規,並針對潛在的被制裁風險進行評估。 3.風險及控制評估(Risk and Control Assessment): 針對勒索軟體之風險,應建立控制評估機制並實踐之。因此可要求金融機關簽訂保險契約,填補勒索軟體造成的損害。 4.監控(Monitoring): 針對潛在的勒索軟體,金融機關有監控其活動進而發現隱藏風險之義務,並向執法與資通安全機關提供該惡意行為之相關資訊。 5.因應處置、回覆(Response): 遭遇勒索軟體攻擊之事件,就其處置措施,須依原訂定之計劃落實。 6.復原(Recovery): 遭遇勒索軟體攻擊之事件,將受損之機能復原,須有明確的程序並加以落實。 7.資訊共享(Information Sharing): 須與組織內外之利害關係人共享勒索軟體之事件內容、資訊以及知識。 8.持續精進(Continuous Learning): 藉由過往之攻擊事件獲取知識,以提高應變勒索軟體之能力,建立完善的交易環境。 此要點並非強制規範,因此不具拘束力,且整合了2016年G7所公布的「G7網路安全文件之要素」(G7 Fundamental Elements of Cybersecurity document)之內容。綜上述CEG所提列重點,針對我國金融機關在抵禦網路攻擊之議題上,應如何完善資安體制,與日本後續因應勒索軟體之政策,皆值得作為借鏡與觀察。
歐洲民間成立一聯盟,倡議資料主權之重要性在今(2021)年1月21日,歐洲數個科技公司、非營利組織與研究機構等民間單位共同發起「現今資料主權」聯盟(Data Sovereignty Now,DSN),宣布將向歐洲各級決策者施加壓力,以確保資料(data)之控制權掌握在生成資料的個人和組織手中。該聯盟認為歐盟執委會應採取決定性之措施,對於在歐洲所生成之資料,應以資料主權原則為基礎,以確保生成資料之個人和組織對其有控制權,以利數位經濟。 而在2020年12月初,澳洲政府首開全球先例提出一新法案,要求Google與Facebook等平台應向澳洲在地媒體支付新聞內容費用,要求雙方進行協商,商討在其平台上顯示之新聞內容所應支付之費用,倘無法達成協議,則由政府之仲裁員決定應支付之金額。此法案引發Google與Facebook高度反彈,不惜以不繼續在澳洲提供服務或停止連結(link)當地媒體之新聞報導作為反擊,要求澳洲政府撤回或修改該法案;然DSN聯盟則認為,Google與Facebook利用其市場主導地位來向澳洲政府施加壓力,正是濫用其資料壟斷權(data monopoly)與壟斷地位之典型例子,為防止科技巨擎將來繼續以此方式勒索政府之唯一方法,即是恢復使用者與平台間之「數位利益平衡」。而Google似有讓步之跡象,根據路透社報導,Google分別已與兩家當地媒體達成協議,將各支付每年3000萬澳幣之費用。該法案是否會如期通過,進而改變或影響此類大型平台與各國政府間資料主權之角力關係,值得持續關注。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
日本與歐盟間個人資料之國際傳輸歐盟委員會(European Commission)原則上禁止將歐盟境內的個人資料傳輸至境外,只有經歐盟委員會認定其個人資料保護機制達到歐盟認可標準的國家或地區例外,例如:瑞士、加拿大、以色列等。而日本未能進入前揭國家之列的主要原因,係日本之個人資料保護法未將政府部門納入規範對象。但是基於經濟全球化的需求,日本與歐盟自2017年第一季開始加速進行雙邊合意協商。 日本個人資料保護委員會公布,於2017年5月修正施行的個人資料保護法,已符合歐盟資料保護規則中准許進行境外傳輸的標準。其中包括以獨立的個人資料保護機關來確保必要的保全機制能確實執行等五點(新設立個人資料保護委員會、個人資料定義的明確化、個人料去識別化、非法販賣個人資料之處罰、其他)。 歐盟對此表示,雙邊對於個人資料保護之標準的差異性已經漸漸縮小,利於日本與歐盟間個人資料國際傳輸的環境也已經逐漸形成。目前於歐盟境內設立子公司或是設立法人的日本企業,預期2018年即能自由就歐盟境內雇員或顧客的個人資料,進行日本與歐盟間的國際傳輸。 由於歐盟關於個人資料之保護,為歐洲聯盟基本權利憲章(Charter of Fundamental Rights of the European Union)所明定,企業若非法進行個人資料境外傳輸,會被處以高額罰金,金額約相當於該企業一年內全球營業額總額的4%或2000萬歐元,兩者取其高者為上限;股東甚至也可能面臨被提起訴訟的風險。日本此次修法,對日本在歐盟境內的企業經營將帶來莫大的裨益。