日本經濟產業省為協助中小企業更新老舊機器設備,並鼓勵中小企業導入新穎先進設備改善企業生產率,公布「先進設備導入計畫指引」(導入促進指針),於2019年至2021年間授權地方政府訂定先進設備導入計畫(先端設備等導入計画),提出區域內申請計畫的資格、設備定義、計畫目的與財產稅減免額度,以促成地方中小企業對地方特色的貢獻與參與,並改善在地產業環境與結構。
符合資格的中小企業若能在核准計畫年度內,每年勞動生產率提高達3%,可適用財產稅稅率減半或0%之優惠稅率(非免稅)。「先進設備導入計畫指引」亦明確指出,審核通過之計畫仍可進一步適用經濟產業省「中小型製造服務經營支援補助」(ものづくり・商業・サービス経営力向上支援補助金)、「服務業IT應用生產力提升補助」(サービス等生産性向上IT導入支援事業),享有更多的補助金補助。
所稱設備係指任何機械、裝置、備品、建築物附屬設備、軟體,以及電子檢驗或測量儀器。各地方政府訂定計畫時,可依其產業政策進一步限縮範圍。而先進之定義,係指欲購置設備之良率或生產效率,應較所淘汰設備高1%以上。有關新、舊設備之汰換應以同產業、同生產流程者為限,兩者比較之期間為淘汰設備原銷售日期起後10年內。由此可知,先進設備導入計畫的特殊性在於加速中小企業汰舊換新,提高勞動生產率以因應人口高齡化,而與鼓勵企業購買最新、最尖端設備之補助措施有所不同。
此外,為健全地方財政自主,「先進設備導入計畫指引」亦要求各地方政府應說明地方產業、環境或人文特色及先進設備的投資條件,以促進經濟發展與地方產業結構的融合。該指引具體建議包括:
美國FTC於2月23日對於兩款聲稱具有診斷能力的醫療app進行裁罰,理由是這兩款app宣傳不實資訊,故應予下架並裁處罰鍰。 Melapp與Mole Detective兩款app,均係付費app,售價大約在1.99至4.99美元不等,宣稱只要使用者從不同角度拍下自己身上的痣,app就能夠判斷這個痣屬於黑色素瘤(Melanoma,為一種罕見的皮膚癌類型,且惡性程度高)的機率,app將罹患黑色素瘤的風險區分為:高、中、低三級。但FTC認為業者的說法並沒有足夠的臨床依據加以證明,因此涉及廣告不實的行為。截至目前為止,Melapp與Mole Detective的開發業者都已經繳納罰鍰,但發行商L-Health拒絕繳納這項罰款,因此FTC的委員會在經過表決之後,決定在2015年2月23日向北伊利諾州地方法院提起訴訟,請求法院執行此項由FTC作成的裁罰。 具有診斷效果的app在美國其實開發已久,但在此案前,尚未見到行政機關對之積極的加以管制,此次由FTC出面對於廣告不實的部分加以裁罰,而非由主管藥物、醫材的FDA進行裁罰,或許與眾人的想像不同,但從FTC的這個行動,我們也發現美國政府已開始關切此類宣稱具有醫療診斷效果的app,醫療app未來的發展情勢將會如何,特別是本案中將被FTC起訴的L-Health會不會再另行提起其他法律爭訟,以確保其產品在市面上的合法性?毋寧是未來世界各地醫療app發展的重要參考資訊。
逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。 於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。 預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。