Smart City的進化:Super City

  日本內閣為實現「Super City」的構想,於2020年2月4日通過《國家戰略特別區域法》部分條文修正案並提交國會審議,擬透過自駕車、無人機物流、遠距醫療等結合社區總體營造,以因應高齡化社會和解決人力不足等課題為目標。

  「Super City」係指充分活用第四次工業革命中,人工智慧及大數據等各項最先進技術,領先實現未來生活方式的「完全的未來都市」。不僅在複數領域的智慧化措施中導入管制革新,同時也於生活中實踐,旨在解決社會中的各項課題。「Super City」可說是較早推動的「Smart City」進化版。Smart City具體推動範圍侷限於能源、交通等個別領域的尖端技術實證,而Super City則是以未來都市的整體創建為目標。即Super City的推動至少會同時涵蓋5個領域以上的生活中各項智慧科技,如物流、支付、行政、醫護、教育、環境、防災等;不僅有技術上的實證,更看重先行於未來社會的生活中實現;最重要的是會從居民的角度,而非從技術開發端、供給端,來追求理想的未來社會。

  不過現行法規對於Super City的實現是有所侷限的,目前日本雖可依《國家戰略特別區域法》,由國家指定特定地區並實施管制鬆綁、制度改革等特例措施,但在推動管制革新以執行各種近未來技術之實證方面,尚需個別與相關主管機關協商,因此經常耗費數月至數年的時間成本。本次修法將強化各相關主管機關的合作,將制定基本方針明定具體的合作程序,而城市間的合作強化則將會整備開放API(Open Application Programming. Interface)規則及法規;另外Super City的實現需要蒐集、整理各領域之資料,因此擬將「資料協作基盤整備事業」列為法定計畫,且事業實施主體可要求國家及地方政府提供其所擁有的資料;由於Super City的推動將會同時涵蓋多個不同領域,為使各領域的管制革新具整體性且能同時實現,修正案中也規範Super City事業計畫的認定程序。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ Smart City的進化:Super City, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8403&no=55&tp=1 (最後瀏覽日:2025/07/06)
引註此篇文章
你可能還會想看
申請專利時請注意:網頁內容亦可能成為「先前技術」(prior art)

  日前英國智慧局 (UK Intellectual Property Office) 裁定一則刊登描述銀行用於網路交易時辨識方法的新聞網頁可以做為「先前技術」的有效證據。該局的副局長,同時亦是專利總審查官 Ben Micklewright 指出,網頁上的日期以及內容應該以英美法民事案件中的「機率的平衡」(on the balance of probabilities) 來衡量其證據力。   法國匯豐銀行(HSBC France) 於2005年7月以一項辨識使用者身份的方法對英國智慧局提出專利申請。該方法包含使用者登入時需輸入一組特定的密碼以辨明身份。HSBC France 於申請時以2004年7月2日在法國的申請日期主張優先權。然而英國智慧局的審查官卻依2項證據核駁了 HSBC France 的上述申請,當中一項即為一篇於2004年2月20日刊載於知名雜誌 Computer Magazine 的網站上的文章。該文章描述了一項由 Lloyds TSB提案的身份辨識方法,與HSBC France 提出專利申請的方法有異曲同工之處。   對此 HSBC France 提出抗辨,指出該文章有電子版與紙本,然審查官卻無法提出紙本來證明其公開發表日期。同時HSBC France 亦主張英國智慧局應追隨一件由歐洲專利局 (EPO) 上訴庭的判決,該判決中指出對於網路上電子文章的證據負荷度應高於傳統文件,即應負「無可懷疑」(beyond reasonable doubt)的舉證力。然而 Ben Micklewright 副局長表示英國智慧局無須追從歐洲專利局的判決,並且因為已存在「先前技術」所以該申請案喪失進步性。他更進一步指出上述申請案無論如何皆無法取得商業方法專利,因為該方法不具備技術的本質(“is not technical in nature”)。

中國大陸科學技術部《關於促進新型研發機構發展的指導意見》

  中國大陸科學技術部於2019年9月12日公布《關於促進新型研發機構發展的指導意見》,目標是提升國家創新體系整體效能。在2016年5月中國大陸國務院發布的《第十三個五年規劃綱要》提及,為強化科技創新的引導作用,必須優化創新組織體系,藉由發展市場導向的「新型研發機構」,推動跨領域偕同創新。故「新型研發機構」必須聚焦在科技創新需求,主要從事科學技術創新與研發服務,具備投資主體多元化、管理制度現代化、營運機制市場化、用人機制靈活的獨立法人機構,得依法註冊為科技類民辦非企業單位(社會服務機構)、事業單位和企業。   中國大陸科學技術部本次公布的指導意見,主要係針對「新型研發機構」在未來政策上之具體運作與發展方向提供指引,包括新型研發機構能夠申報的國家科研項目、鼓勵設立科技類民辦非企業單位的新型研發機構政策、政府獎勵科研措施等說明。 (一) 新型研發機構申報國家科研項目   本指導意見第11條,符合條件的新型研發機構,可申報國家科技重大專項、國家重點研發計劃、國家自然科學基金等各類政府科技項目、科技創新基地和人才計劃。 (二) 鼓勵設立科技類民辦非企業單位的新型研發機構   本指導意見第12條,科技類民辦非企業單位應依法進行登記管理,營運所得利潤主要用於機構管理運作、建設發展和研發創新等,出資方不得分紅。並得依據《中華人民共和國企業所得稅法》及非營利組織企業所得稅、職務科技成果轉化個人所得稅、科技創新進口稅收等規定,享受稅收優惠。 (三) 支持與獎勵科研措施   本指導意見第14條,地方政府得根據區域創新發展需要,支持新型研發機構建設發展,包括給予基礎建設、購買科研設備、人才住房配套服務;採用創新券(innovation vouchers),推動企業向新型研發機構購買研發創新服務。第15條,更鼓勵透過國家科技成果轉化引導基金,支持新型研發機構推動科研成果轉化。

歐盟執委會發布《2019歐盟產業研發投資計分板》,美國和歐盟為世界研發投資最主要地區

  歐盟執委會(European Commission, EC)於2019年12月18日發布《2019歐盟產業研發投資計分板》(The 2019 EU Industrial R&D Investment Scoreboard)。產業研發投資計分板是歐盟每年出具一次的報告,2019年計分板報告包含2500家在2018-2019年間投入最多研發資金的企業,分別位於全球44個國家/地區,每一企業的研發投資金額超過3000萬歐元,總計約為8234億歐元,為全球研發支出的90%。在這2500家企業中,551家來自歐盟公司,為投資總額的25%;769家來自美國,為投資總額的38%;318家來自日本,佔13%;507家中國公司,佔12%。   報告中指出,2018年企業研發投資總額較2017年增加8.9%,主要是中國在全球研發資金投入比例不斷增加。另外,研發投資高度集中於大型企業;在這2500家企業中,前10大、前50大企業分別佔研發總額的15%和40%。前50大企業中,最多者為美國企業22家和歐盟企業17家。再從研發投資領域觀察,前三大領域分別為資通訊產業(38.7%)、健康(20.7%)和汽車產業(17.2%),佔總量的76.6%。但每一個國家重視的領域不盡相同,例如歐盟投資20%在資通訊、21.6%在健康、31%汽車,而美國的資通訊研發投資佔了52.8%、26.7%在健康,僅有7.6%在汽車。   再從個別企業研發投資排名來看,前四大企業分別為Alphabet、Samsung、Microsoft和Volkswagen。另外,報告統計在過去的15年中,有8家企業在全球研發投資金額排名中上升了70名以上,分別為:Alphabet、華為、蘋果、Facebook、阿里巴巴、Celgene、Gilead Sciences和德國馬牌;也代表這15年間資通訊、生技與汽車產業發展的重要性。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP