美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。

  該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為:

  1.  培養AI公眾信任(Public Trust in AI);
  2. 公眾參與(Public Participation);
  3. 科學研究倫理與資訊品質(Scientific Integrity and Information Quality);
  4. AI風險評估與管理(Risk Assessment and Management);
  5. 獲益與成本原則(Benefits and Costs);
  6. 彈性原則(Flexibility);
  7. 公平與反歧視(Fairness and Non-Discrimination);
  8. AI應用之揭露與透明化(Disclosure and Transparency);
  9. AI系統防護與措施安全性(Safety and Security);
  10. 機構間之相互協調(Interagency Coordination)。

  此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

相關連結
相關附件
你可能會想參加
※ 美國OMB發布人工智慧應用監管指南備忘錄草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8408&no=67&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
KCC提出Giga Internet計畫

  南韓通訊傳播委員會(Korea Communications Commission, KCC)與國家資訊社會局(National Information Society Agency, NIA) 於2009年7月24日共同宣佈「Giga網路促進計劃」的開展,預計在2012年開始提供商轉服務。Giga網路可在十秒鐘內下載一部DVD影片,較既有的光纖區域網路快上十倍。 南韓政府選定Giga網路作為國家型計畫乃係為了在「寬頻匯流網路」(BcN)計畫後,能繼續提供世界上一流的廣播通訊基礎建設。另一目的是希望藉此能有效利用高品質、大容量與匯流之資訊。 為了發展與Giga網路相關的技術、設備及服務,「Giga網路促進計劃」的參與者包括南韓的資通訊大型企業,包括一類、二類電信業者、相關軟業體、終端設備商與研究機構。藉此以全面且有體系性地逐步於未來四年內推行此計劃。該計畫預計於在2012年底,提供3D與多角度IPTV、HD家庭閉路電視(CCTV)與電視多媒體訊息服務給2,000家戶 。   KCC常委Tae-Gun Hyung預測:該計畫不將止是促進產業發展,也增加了全球資通訊匯流的科技競爭力,提供了新的市場進入領域,改變人們生活型態,並且帶給社會極大的催化效力。 南韓未來四年推動Giga網路取代BcN的成效,相當值得資通訊產業與發展型態屬性相近的台灣參考,作為我國推動數位匯流的重要借鏡。

eBay接連於法國與英國L'Oreal商標侵權訴訟中獲勝

  擁有Lancome、YSL(Yves Saint Laurent)及Garnier等全球知名品牌的法國L'Oreal集團,於2007年9月向於英國、法國、德國、比利時及西班牙等五國的法院提起商標侵權訴訟,控告全球網拍龍頭eBay放任網路使用者於eBay出售仿冒的香水、化妝品及其他L'Oreal集團產品,導致L'Oreal蒙受重大損失,主張eBay應為網路使用者的侵權行為負起連帶責任。     但繼2008年8月比利時法院率先判決eBay勝訴後,2009年5月法國及英國法院亦接連判決eBay勝訴。法國巴黎法院於5月14日作成的裁決中,表示eBay已恪遵自身所負義務並以良善態度解決仿冒商品問題,因此eBay毋庸為網路使用者的侵權行為加以負責;法院同時表示eBay與L'Oreal雙方應攜手合作,共同制定打擊侵權行為的策略,以防制仿冒商品繼續透過網路販售流通。     法方判決eBay勝訴未久,英國法院緊接於5月22日判決eBay勝訴,對於接連獲勝,eBay仍再三強調本身僅係一單純提供商品交易服務之平台,自無須就使用者侵權行為加以負責;L'Oreal則表示eBay有責採取進一步的措施,以杜絕網路使用者販售仿冒的L'Oreal商品,其並表示未來仍將以eBay助長商標侵權為由,持續於歐洲各國提出訴訟。

美國白宮發佈「AI應用監管指南」十項原則

  美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。   這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標: 一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。 二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。 三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。   這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP