美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。

  該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為:

  1.  培養AI公眾信任(Public Trust in AI);
  2. 公眾參與(Public Participation);
  3. 科學研究倫理與資訊品質(Scientific Integrity and Information Quality);
  4. AI風險評估與管理(Risk Assessment and Management);
  5. 獲益與成本原則(Benefits and Costs);
  6. 彈性原則(Flexibility);
  7. 公平與反歧視(Fairness and Non-Discrimination);
  8. AI應用之揭露與透明化(Disclosure and Transparency);
  9. AI系統防護與措施安全性(Safety and Security);
  10. 機構間之相互協調(Interagency Coordination)。

  此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

相關連結
相關附件
你可能會想參加
※ 美國OMB發布人工智慧應用監管指南備忘錄草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8408&no=67&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
地理空間資料(Geospatial Data)

  Google地圖、GPS導航、Facebook定位打卡、「台北等公車」、Uber叫車,「地理空間資料」(Geospatial Data)的運用已經滲透現代人的生活。然而,究竟什麼是「地理空間資料」?所謂「地理空間資料」,依美國的《2018年地理空間資料法》 (Geospatial Data Act of 2018)的定義:「與地球上緊扣相關的位置資訊,包含辨識地球上的地理位置和自然或結構特徵與疆界。在向量資料組(Vector Dataset)中,大致以點、線、多邊形或複雜的地理特徵或現象呈現。該資料可能透過遙測(Remote Sensing)、製圖(Mapping)和量測(Surveying)科技取得。」   地理空間資料涉及地理學、地圖學(Cartography)、地理資訊系統學(Geographical Information Science, GIScience)及許多相關的科學領域。互動式的時間與空間功能,成就了當今混和空間與時間的資訊爆炸,更是五花八門運用地理資訊的手機應用程式之基礎等。應用場景涉及政府、商業、社會各層面,順利達成多元且重要的任務,例如:疾病通報、環境監測和公共安全。2017年Google於委託AlphaBeta的分析報告指出:「全球地理空間資料相關服務每年有四千億美元的產值、節省消費者超過五千五百億美元的燃料和時間成本、直接創造四百萬份工作機會。透過電子地圖服務,如:提高顧客流量的免費行銷工具Google My Business,更促使小型商家產生1.2兆美金的營業額。」

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

歐盟執委會授權各國決定GMO的提案遭抨擊  10月環境部長會議將繼續協商

  歐盟執委會(European Commission)於今(2010)年7月授權歐盟各會員國自行決定禁止或准許基因改造(GM)農作物的提案,過去幾個月來即已不斷遭受外界質疑,在近日(9月27日)召開的農業部長會議上又受到主要歐盟會員國的強烈抨擊;歐盟消費者健康及安全政策部門代表John Dalli表示,這個問題將會在10月14日召開的環境部長會議繼續進行協商。   事實上,歐盟執委會的提案同時引來了GMO支持者與GMO反對者的譴責,他們認為這項議案會給農民與農產業者製造法律上的不確定空間,徒增困擾;此外,綠色和平組織歐盟農業政策執行長Marco Contiero也表示,各會員國都不應該接受執委會的這項提案,反而必須對執委會施加壓力,以確保農作物的安全並預防環境污染。農業會議上,許多會員國農業部長也擔心執委會的提案不但會分裂農產品國際市場,並也可能與WTO規則相衝突。   由於預期執委會7月份的提案可能將被撤回或大幅修改,參與農業會議的各國部長也都同意在這過渡時期成立專責的工作小組,以資因應該提案所引致的眾多批評。就現階段看起來,GMO爭議還會在歐盟繼續上演,後續的相關討論值得繼續觀察。

日本修法防止元宇宙品牌商標仿冒

日本政府於今(2023)年3月10日,閣議通過不正競爭防止法等一系列智財法律修正案,包括商標法、不正競爭防止法、意匠法(設計專利)、特許法(發明專利)、實用新案法(新型專利)、工業所有權特例法等智財相關六法修正案。5月11日送第211回國會(眾議院)審議中。 本次智財法律修正案,係為求智慧財產進行適當的保護與提升智慧財產制度的便利性,並確保國內外事業者間公平競爭,修法擴充他人商品型態的仿冒態樣,創設基於商標權人的同意下近似商標註冊制度;設計專利的新穎性喪失例外適用之證明手續的簡化、發明專利等國際申請優先權主張之手續電子化,另對外國公務員贈賄罪之罰金上限提高等措施。 為強化數位化多元事業品牌保護,除商標法修法以擴充可取得註冊商標,針對防止數位空間之仿冒行為,不正競爭防止法規定,自原始商品於日本首次銷售起三年內(不正競爭防止法第19條第1款第5項),禁止銷售與該商品非常近似的仿冒商品,然修法前前述行為態樣不適用於數位空間。本次修法為防止數位空間之仿冒行為,規定商品型態的仿冒行為,即使係發生於元宇宙等數位空間亦構成不正競爭行為,可行使侵害排除及侵害防止請求權(不正競爭防止法第2條第1款第3項)。 日本透過智財修法將商標保護觸角延伸入虛擬空間之作法,可作為我國未來政策推動與修法之借鑑。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP