美國食品及藥物管理局(Food and Drug Administration, FDA)於2020年2月14日,發布於海內外應對2019年新型冠狀病毒之行動聲明,其包括:
本文為「經濟部產業技術司科技專案成果」
美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。 這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標: 一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。 二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。 三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。 這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。
中國對抗殭屍網路與木馬法制策略研析 歐盟通過網路與資訊系統安全指令歐盟於2016年7月6日公布了網路與資訊系統安全指令(Directive on Security of Network and Information Systems, NIS Directive),該指令目的是希望歐盟內之關鍵基礎服務營運商及數位服務提供者就資訊交換、合作及共通安全要求上有建立及規劃之基本能力,以提高歐盟內部市場之功能。 故至2018年11月前,各會員國須確認境內的關鍵基礎服務營運商並建立一份清單,包含能源、運輸、銀行、金融市場基礎建設、衛生部門、飲水供應及分配、數位基礎設施等部分,其判斷標準為(a)提供維持社會重要或經濟活動之服務;(b)倚賴網路或資訊系統供應之服務;(c)該服務之提供易受顯著破壞影響者。該指令之適用範圍亦納入數位服務,如線上市場、搜尋引擎及雲端服務之數位服務提供者,而上述兩者所適用之規範略有不同,如數位服務提供者在規劃資訊安全措施及資安事件發生之通知義務時,另需將其系統及設施之安全性、事件處理、業務管理之持續性、監測、稽核及測試、符合國際標準等因素列入考量。 此外,為了促進會員國間之策略合作及資訊交換,歐盟將會設立一個合作小組,亦將建立電腦安全事件因應小組(Computer Security Incident Response Teams, CSIRTs),主要負責監測國家資安事件、並對資安風險為預警、因應及分析等,另為確保各會員國彼此間在運作上之迅速與效率,並建立電腦安全事件因應小組網路(CSIRTs network),提供各會員國交換資安風險或事件相關資訊之平台。 該指令於今年8月生效,會員國須於指令生效後21個月內即2018年5月,將指令之內容適用至本國法並公布之,該指令之內容可做為我國訂定資安法規之參考。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。